32,769 research outputs found

    Space shuttle contamination due to backflow from control motor exhaust

    Get PDF
    Spacecraft contamination of the space shuttle orbiter and accompanying Spacelab payloads is studied. The scattering of molecules from the vernier engines and flash evaporator nozzle after impingement on the orbiter wing surfaces, and the backflow of molecules out of the flash evaporator nozzle plume flow field due to intermolecular collisions in the plume are the problems discussed. A method was formulated for dealing with these problems, and detailed results are given

    On the wake of a Darrieus turbine

    Get PDF
    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent

    Structure and formation energy of carbon nanotube caps

    Full text link
    We present a detailed study of the geometry, structure and energetics of carbon nanotube caps. We show that the structure of a cap uniquely determines the chirality of the nanotube that can be attached to it. The structure of the cap is specified in a geometrical way by defining the position of six pentagons on a hexagonal lattice. Moving one (or more) pentagons systematically creates caps for other nanotube chiralities. For the example of the (10,0) tube we study the formation energy of different nanotube caps using ab-initio calculations. The caps with isolated pentagons have an average formation energy 0.29+/-0.01eV/atom. A pair of adjacent pentagons requires a much larger formation energy of 1.5eV. We show that the formation energy of adjacent pentagon pairs explains the diameter distribution in small-diameter nanotube samples grown by chemical vapor deposition.Comment: 8 pages, 8 figures (gray scale only due to space); submitted to Phys. Rev.

    Orbit-resolved photometry and echelle spectroscopy of the cataclysmic variable ST LMi during a 2007 high state

    Get PDF
    We present high-resolution echelle spectra and contemporaneous photometry of the polar ST LMi during a high state in 2007 March. Emission lines at Hα, He I λ5876, and He I λ7065 show similar line profiles over orbital phase and have narrow and broad components. These profile changes with phase are very similar to those reported in earlier high-state studies of ST LMi. The radial velocity curves from double Gaussian fits to the line profiles are interpreted as two crossing curves, neither of which is coincident with the orbital motion of the secondary star. We attribute one component to infall motions near the white dwarf and the other to a gas streaming along magnetic field lines connecting the two stars

    Positive Ageing: Elements and factors for design

    Full text link
    Copyright © 2015 ACM. A significant number of models and frameworks have introduced, and been used to support, positive approaches to ageing. They include Successful Ageing, Active Ageing and Ageing in Place, among others. The number of models can create confusion for technology designers who wish to incorporate such models into practice. This paper reviews different models of positive ageing in order to distil a comprehensive list of elements and factors that are important to, and supportive of, positive ageing. This list offers designers a useful source for considering the design of technology to support positive ageing. Finally, we discuss some gaps found in existing models and offer some insights into how designers could use this paper as a resource for design

    Are there any good digraph width measures?

    Full text link
    Several different measures for digraph width have appeared in the last few years. However, none of them shares all the "nice" properties of treewidth: First, being \emph{algorithmically useful} i.e. admitting polynomial-time algorithms for all \MS1-definable problems on digraphs of bounded width. And, second, having nice \emph{structural properties} i.e. being monotone under taking subdigraphs and some form of arc contractions. As for the former, (undirected) \MS1 seems to be the least common denominator of all reasonably expressive logical languages on digraphs that can speak about the edge/arc relation on the vertex set.The latter property is a necessary condition for a width measure to be characterizable by some version of the cops-and-robber game characterizing the ordinary treewidth. Our main result is that \emph{any reasonable} algorithmically useful and structurally nice digraph measure cannot be substantially different from the treewidth of the underlying undirected graph. Moreover, we introduce \emph{directed topological minors} and argue that they are the weakest useful notion of minors for digraphs

    Pupil remapping for high contrast astronomy: results from an optical testbed

    Full text link
    The direct imaging and characterization of Earth-like planets is among the most sought-after prizes in contemporary astrophysics, however current optical instrumentation delivers insufficient dynamic range to overcome the vast contrast differential between the planet and its host star. New opportunities are offered by coherent single mode fibers, whose technological development has been motivated by the needs of the telecom industry in the near infrared. This paper presents a new vision for an instrument using coherent waveguides to remap the pupil geometry of the telescope. It would (i) inject the full pupil of the telescope into an array of single mode fibers, (ii) rearrange the pupil so fringes can be accurately measured, and (iii) permit image reconstruction so that atmospheric blurring can be totally removed. Here we present a laboratory experiment whose goal was to validate the theoretical concepts underpinning our proposed method. We successfully confirmed that we can retrieve the image of a simulated astrophysical object (in this case a binary star) though a pupil remapping instrument using single mode fibers.Comment: Accepted in Optics Expres

    Flux Qubits and Readout Device with Two Independent Flux Lines

    Full text link
    We report measurements on two superconducting flux qubits coupled to a readout Superconducting QUantum Interference Device (SQUID). Two on-chip flux bias lines allow independent flux control of any two of the three elements, as illustrated by a two-dimensional qubit flux map. The application of microwaves yields a frequency-flux dispersion curve for 1- and 2-photon driving of the single-qubit excited state, and coherent manipulation of the single-qubit state results in Rabi oscillations and Ramsey fringes. This architecture should be scalable to many qubits and SQUIDs on a single chip.Comment: 5 pages, 4 figures, higher quality figures available upon request. Submitted to PR
    corecore