956 research outputs found

    Nematode movement along a chemical gradient in a structurally heterogeneous environment : 1 . Experiment

    Get PDF
    L'interaction entre l'hétérogénéité structurale et les gradients chimiques, ainsi que leur influence sur le déplacement des nématodes, ont été étudiées. Trois dispositifs expérimentaux ont été utilisés qui comprennent un nématode (#Caenorhabditis elegans) placé sur une couche homogène de milieu nutritif gélosé dans une boîte de Petri avec ou sans présence d'une source bactérienne de nourriture (#Escherichia coli) utilisée comme attractif. L'hétérogénéité structurale est réalisée en ajoutant des grains de sable en une seule épaisseur dans chacun des traitements homologues. Toutes les traces ont été relevées à l'aide d'un dispositif de vidéo à séquences temporelles et les données digitalisées avant analyse. Les répartitions des angles de changement de direction et les dimensions fractales des traces sont calculées pour chaque traitement. Il se révèle un effet statistiquement significatif (P inférieur ou égal à 0,01) de tous les traitements sur le déplacement des nématodes. En présence d'un produit attractif, le déplacement du nématode est plus linéaire et dirigé vers la source bactérienne. L'hétérogénéité structurale provoque un déplacement plus linéaire que dans le cas d'un milieu homogène. La dimension fractale des traces du nématode est significativement (P inférieur ou égal à 0,01) plus élevée pour les traitements sans sable ni bactéries que pour les autres traitements. Ces résultats permettent, pour la première fois, de quantifier le degré auquel les nématodes utilisent un comportement de recherche de nourriture au hasard dans un milieu homogène et adoptent un déplacement mieux orienté en présence d'un produit attractif. Finalement, lorsqu'une hétérogénéité est présente, la stratégie de recherche de nourriture devient plutôt une stratégie d'évitement permettant au nématode d'échapper aux "pièges" structuraux, tels les pores en cul-de-sac, et de pouvoir ainsi continuer à réagir à l'attraction. (Résumé d'auteur

    Interface reactions and Kirkendall voids in metal organic vapor phase epitaxy grown Cu In,Ga Se2 thin films on GaAs

    Get PDF
    Cu In1 xGax Se2 CIGS films were grown on 001 GaAs at 570 C or 500 C by means of metalorganic vapor phase epitaxy. All films were Cu rich [Cu In Ga gt;1] with pseudomorphic Cu2Se second phases found only on the growth surface. During growth, diffusion of Ga from the substrate and vacancies generated by the formation of CIGS from Cu2Se at the surface occurred. The diffusion processes lead to the formation of Kirkendal voids at the GaAs CIGS interface. Transmission electron microscopy and nanoprobe energy dispersive spectroscopy were used to analyze these diffusion and void formation processes. The diffusivity of Ga in CIGS was found to be relatively low. This is postulated to be due to a comparatively low concentration of point defects in the epitaxial films. A reaction model explaining the observed profiles and voids is propose

    Automatic structures for semigroup constructions

    Get PDF
    We survey results concerning automatic structures for semigroup constructions, providing references and describing the corresponding automatic structures. The constructions we consider are: free products, direct products, Rees matrix semigroups, Bruck-Reilly extensions and wreath products.Comment: 22 page

    QCD Strings as Constrained Grassmannian Sigma Model:

    Get PDF
    We present calculations for the effective action of string world sheet in R3 and R4 utilizing its correspondence with the constrained Grassmannian sigma model. Minimal surfaces describe the dynamics of open strings while harmonic surfaces describe that of closed strings. The one-loop effective action for these are calculated with instanton and anti-instanton background, reprsenting N-string interactions at the tree level. The effective action is found to be the partition function of a classical modified Coulomb gas in the confining phase, with a dynamically generated mass gap.Comment: 22 pages, Preprint: SFU HEP-116-9

    Impurity (Fe, Cl, and P)-induced grain boundary and secondary phases in commercially pure titanium (CP-Ti)

    Get PDF
    A detailed transmission electron microscopy (TEM) study has been made of the microstructures of two as-sintered CP-Ti materials. We show that iron content at the impurity level of 1280 ppm, less than the limit (2000 ppm) for CP-Ti ASTM Grade 1, is sufficient to lead to the formation of a grain boundary (GB) β-Ti phase in the as-sintered microstructure due to segregation. The Fe-stabilized GB β-Ti phase contains ∼7 at. pct Fe and ∼1.5 at. pct Cl. In addition, nano-precipitates of ω-Ti exist in the Fe-stabilized GB β-Ti phase. A phosphorus (P)-enriched Ti-P-based phase was also identified, which has a tetragonal crystal structure with lattice parameters of (a = b = 8.0 ± 0.2 Å and c = 2.7 ± 0.2 Å) and is new to the existing database for Ti-P-enriched phases. As-sintered CP-Ti materials are thus not necessarily a single α-Ti phase material. These impurity-induced phases may exert potential impacts on the properties of sintered CP-Ti

    An optimization principle for deriving nonequilibrium statistical models of Hamiltonian dynamics

    Full text link
    A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. As in standard projection operator methods, a set of resolved variables is selected to capture the slow, macroscopic behavior of the system, and the family of quasi-equilibrium probability densities on phase space corresponding to these resolved variables is employed as a statistical model. The macroscopic dynamics of the mean resolved variables is determined by optimizing over paths of these probability densities. Specifically, a cost function is introduced that quantifies the lack-of-fit of such paths to the underlying microscopic dynamics; it is an ensemble-averaged, squared-norm of the residual that results from submitting a path of trial densities to the Liouville equation. The evolution of the macrostate is estimated by minimizing the time integral of the cost function. The value function for this optimization satisfies the associated Hamilton-Jacobi equation, and it determines the optimal relation between the statistical parameters and the irreversible fluxes of the resolved variables, thereby closing the reduced dynamics. The resulting equations for the macroscopic variables have the generic form of governing equations for nonequilibrium thermodynamics, and they furnish a rational extension of the classical equations of linear irreversible thermodynamics beyond the near-equilibrium regime. In particular, the value function is a thermodynamic potential that extends the classical dissipation function and supplies the nonlinear relation between thermodynamics forces and fluxes

    Towards Solving QCD - The Transverse Zero Modes in Light-Cone Quantization

    Get PDF
    We formulate QCD in (d+1) dimensions using Dirac's front form with periodic boundary conditions, that is, within Discretized Light-Cone Quantization. The formalism is worked out in detail for SU(2) pure glue theory in (2+1) dimensions which is approximated by restriction to the lowest {\it transverse} momentum gluons. The dimensionally-reduced theory turns out to be SU(2) gauge theory coupled to adjoint scalar matter in (1+1) dimensions. The scalar field is the remnant of the transverse gluon. This field has modes of both non-zero and zero {\it longitudinal} momentum. We categorize the types of zero modes that occur into three classes, dynamical, topological, and constrained, each well known in separate contexts. The equation for the constrained mode is explicitly worked out. The Gauss law is rather simply resolved to extract physical, namely color singlet states. The topological gauge mode is treated according to two alternative scenarios related to the In the one, a spectrum is found consistent with pure SU(2) gluons in (1+1) dimensions. In the other, the gauge mode excitations are estimated and their role in the spectrum with genuine Fock excitations is explored. A color singlet state is given which satisfies Gauss' law. Its invariant mass is estimated and discussed in the physical limit.Comment: LaTex document, 26 pages, one figure (obtainable by contacting authors). To appear in Physical. Review

    The sintering, sintered microstructure and mechanical properties of Ti-Fe-Si Alloys

    Get PDF
    A systematic study has been conducted of the sintering, sintered microstructure and tensile properties of a range of lower cost Ti-Fe-Si alloys, including Ti-3Fe-(0-4)Si, Ti-(3-6)Fe-0.5Si, and Ti-(3-6)Fe-1Si (in wt pct throughout). Small additions of Si (≤1 pct) noticeably improve the as-sintered tensile properties of Ti-3Fe alloy, including the ductility, with fine titanium silicides (TiSi) being dispersed in both the α and β phases. Conversely, additions of >1 pct Si produce coarse and/or networked TiSi silicides along the grain boundaries leading to predominantly intergranular fracture and, hence, poor ductility, although the tensile strength continues to increase because of the reinforcement by TiSi. Increasing the Fe content in the Ti-xFe-0.5/ 1.0Si alloys above 3 pct markedly increases the average grain size and changes the morphology of the α-phase phase to much thinner and more acicular laths. Consequently, the ductility drops t

    Advancement in the pressureless sintering of CP titanium using high-frequency induction heating

    Get PDF
    High-frequency induction heating is applied as an alternative heating source for pressureless sintering of commercially pure Ti powders, aiming to intensify the sintering process. The effects of the process parameters on the properties of the sintered material are systematically studied. The initial powder compact density is the most influential parameter permitting sintered structures with highly porous to almost fully dense appearance. Short heating time combined with sintering to temperatures just above the β-transus resulted in a strong diffusion bonding between the Ti powder particles, and grain growth is observed at the former boundaries of the neighboring powder particles. The dimpled appearance of the fracture surface at those regions confirmed the strong metallic interparticle bonding. Tensile properties comparable to those of Ti-Grade 3 and Ti-Grade 4 are achieved, which also demonstrates the efficiency of the induction sintering process. A mechanism explaining the fast and efficient sintering is proposed. The process has the added advantage of minimizing the oxygen pickup
    corecore