1,066 research outputs found
Wavelets and graph -algebras
Here we give an overview on the connection between wavelet theory and
representation theory for graph -algebras, including the higher-rank
graph -algebras of A. Kumjian and D. Pask. Many authors have studied
different aspects of this connection over the last 20 years, and we begin this
paper with a survey of the known results. We then discuss several new ways to
generalize these results and obtain wavelets associated to representations of
higher-rank graphs. In \cite{FGKP}, we introduced the "cubical wavelets"
associated to a higher-rank graph. Here, we generalize this construction to
build wavelets of arbitrary shapes. We also present a different but related
construction of wavelets associated to a higher-rank graph, which we anticipate
will have applications to traffic analysis on networks. Finally, we generalize
the spectral graph wavelets of \cite{hammond} to higher-rank graphs, giving a
third family of wavelets associated to higher-rank graphs
Metabolism of alcaligenes denitrificans in biofilm vs planktonic cells
Aims: To compare the effect of phosphorous concentration (200 mg P 1-1 and 20 mg P 1-1) on
the denitrifying efficiency of Alcaligenes denitrificans when in the form of planktonic cells or in the form of a biofilm, and to select the most adequate C/N ratio.
Methods and Results: Two types of assays were carried out: with planktonic cells and with
cells in biofilm form. Anoxic bottles with the appropriate C/N and phosphorous concentration
were incubated at 30°C and submitted to orbital shaking at 150 rev min-1. The specific activity
of cells in biofilm form, in terms of substrate consumption, was significantly higher than cells in
planktonic form. With regard to the effect of increasing phosphorous concentration, an increase
in specific activity was also only evident when the cells were in biofilm form.
Conclusions: The two forms showed different performances and phosphorous concentration
only markedly affected the biofilm form.
Significance and Impact of the Study: The importance of the C/N/P ratio in the
denitrification process is demonstrated. As there was no report in the literature about the
stoichiometric relationship of heterotrophic denitrification with citrate, its stoichiometry,
including the requirement for cell synthesis, was determined.Instituto de Biotecnologia e QuÃmica Fina (IBQF).
PRAXIS XXI
Pretreatment with beta-blockers and the frequency of hypokalemia in patients with acute chest pain
Plasma potassium concentration was measured at admission in 1234 patients who presented with acute chest pain. One hundred and ninety five patients were on P blockers before admission. The potassium concentrations of patients admitted early (within four hours of onsetof symptoms) were compared with those admitted later (4-18 hours after onset of symptoms). There was a transient fall in plasma potassium concentrations in patients not pre-treated with , B blockers. This was not seen in patients who had been on P blockers before admission. Nonselective, B blockers were more effective than cardioselective agents in maintaining concentrationsof plasma potassium. These findings suggest a mechanism for the beneficial effects of ,B blockers on morbidity and mortality in acute myocardial infarction
Recommended from our members
We are the Change that we Seek: Information Interactions During a Change of Viewpoint
There has been considerable hype about filter bubbles and echo chambers influencing the views of information consumers. The fear is that these technologies are undermining democracy by swaying opinion and creating an uninformed, polarised populace. The literature in this space is mostly techno-centric, addressing the impact of technology. In contrast, our work is the first research in the information interaction field to examine changing viewpoints from a human-centric perspective. It provides a new understanding of view change and how we might support informed, autonomous view change behaviour. We interviewed 18 participants about a self-identified change of view, and the information touchpoints they engaged with along the way. In this paper we present the information types and sources that informed changes of viewpoint, and the ways in which our participants interacted with that information. We describe our findings in the context of the techno-centric literature and suggest principles for designing digital information environments that support user autonomy and reflection in viewpoint formation
Gravitation and inertia; a rearrangement of vacuum in gravity
We address the gravitation and inertia in the framework of 'general gauge
principle', which accounts for 'gravitation gauge group' generated by hidden
local internal symmetry implemented on the flat space. We connect this group to
nonlinear realization of the Lie group of 'distortion' of local internal
properties of six-dimensional flat space, which is assumed as a toy model
underlying four-dimensional Minkowski space. The agreement between proposed
gravitational theory and available observational verifications is satisfactory.
We construct relativistic field theory of inertia and derive the relativistic
law of inertia. This theory furnishes justification for introduction of the
Principle of Equivalence. We address the rearrangement of vacuum state in
gravity resulting from these ideas.Comment: 17 pages, no figures, revtex4, Accepted for publication in Astrophys.
Space Sc
WMAP constraints on scalar-tensor cosmology and the variation of the gravitational constant
We present observational constraints on a scalar-tensor gravity theory by
test for CMB anisotropy spectrum. We compare the WMAP temperature
power spectrum with the harmonic attractor model, in which the scalar field has
its harmonic effective potential with curvature in the Einstein
conformal frame and the theory relaxes toward Einstein gravity with time. We
found that the present value of the scalar coupling, i.e. the present level of
deviation from Einstein gravity , is bounded to be smaller than
(), and () for . This constraint is much stronger than the bound from the solar
system experiments for large models, i.e., and 0.3 in
and limits, respectively. Furthermore, within the framework
of this model, the variation of the gravitational constant at the recombination
epoch is constrained as , and
.Comment: 7 page
Boost-Invariant Running Couplings in Effective Hamiltonians
We apply a boost-invariant similarity renormalization group procedure to a
light-front Hamiltonian of a scalar field phi of bare mass mu and interaction
term g phi^3 in 6 dimensions using 3rd order perturbative expansion in powers
of the coupling constant g. The initial Hamiltonian is regulated using momentum
dependent factors that approach 1 when a cutoff parameter Delta tends to
infinity. The similarity flow of corresponding effective Hamiltonians is
integrated analytically and two counterterms depending on Delta are obtained in
the initial Hamiltonian: a change in mu and a change of g. In addition, the
interaction vertex requires a Delta-independent counterterm that contains a
boost invariant function of momenta of particles participating in the
interaction. The resulting effective Hamiltonians contain a running coupling
constant that exhibits asymptotic freedom. The evolution of the coupling with
changing width of effective Hamiltonians agrees with results obtained using
Feynman diagrams and dimensional regularization when one identifies the
renormalization scale with the width. The effective light-front Schroedinger
equation is equally valid in a whole class of moving frames of reference
including the infinite momentum frame. Therefore, the calculation described
here provides an interesting pattern one can attempt to follow in the case of
Hamiltonians applicable in particle physics.Comment: 24 pages, LaTeX, included discussion of finite x-dependent
counterterm
On the Detection of a Scalar Stochastic Background of Gravitational Waves
In the near future we will witness the coming to a full operational regime of
laser interferometers and resonant mass detectors of spherical shape. In this
work we study the sensitivity of pairs of such gravitational wave detectors to
a scalar stochastic background of gravitational waves. Our computations are
carried out both for minimal and non minimal coupling of the scalar fields.Comment: 25 pages, 3 figure
Tensor-scalar gravity and binary-pulsar experiments
Some recently discovered nonperturbative strong-field effects in
tensor-scalar theories of gravitation are interpreted as a scalar analog of
ferromagnetism: "spontaneous scalarization". This phenomenon leads to very
significant deviations from general relativity in conditions involving strong
gravitational fields, notably binary-pulsar experiments. Contrary to
solar-system experiments, these deviations do not necessarily vanish when the
weak-field scalar coupling tends to zero. We compute the scalar "form factors"
measuring these deviations, and notably a parameter entering the pulsar timing
observable gamma through scalar-field-induced variations of the inertia moment
of the pulsar. An exploratory investigation of the confrontation between
tensor-scalar theories and binary-pulsar experiments shows that nonperturbative
scalar field effects are already very tightly constrained by published data on
three binary-pulsar systems. We contrast the probing power of pulsar
experiments with that of solar-system ones by plotting the regions they exclude
in a generic two-dimensional plane of tensor-scalar theories.Comment: 35 pages, REVTeX 3.0, uses epsf.tex to include 9 Postscript figure
- …