214 research outputs found

    Rest-frame near-infrared sizes of galaxies at cosmic noon: objects in JWST's mirror are smaller than they appeared

    Get PDF
    Galaxy sizes and their evolution over cosmic time have been studied for decades and serve as key tests of galaxy formation models. However, at z1z\gtrsim1 these studies have been limited by a lack of deep, high-resolution rest-frame infrared imaging that accurately traces galaxy stellar mass distributions. Here, we leverage the new capabilities of the James Webb Space Telescope to measure the 4.4μ\mum sizes of 1000{\sim}1000 galaxies with logM/M9\log{\rm{M}_*/\rm{M}_\odot}\ge9 and 1.0z2.51.0\le z \le 2.5 from public CEERS imaging in the EGS deep field. We compare the sizes of galaxies measured from NIRCam imaging at 4.4μ\mum (λrest1.6μ\lambda_{\mathrm{rest}}\sim1.6\mu m) with sizes measured at 1.5μ1.5\mum (λrest5500\lambda_{\mathrm{rest}}\sim5500A). We find that, on average, galaxy half-light radii are 8\sim8% smaller at 4.4μ\mum than 1.5μ\mum in this sample. This size difference is markedly stronger at higher stellar masses and redder rest-frame VJV-J colors: galaxies with M1011M{\rm M}_* \sim 10^{11}\,{\rm M}_\odot have 4.4μ\mum sizes that are 25\sim 25% smaller than their 1.5μ\mum sizes. Our results indicate that galaxy mass profiles are significantly more compact than their rest-frame optical light profiles at cosmic noon, and demonstrate that spatial variations in age and attenuation are important, particularly for massive galaxies. The trend that we find here impacts our understanding of the size growth and evolution of galaxies, and suggests that previous studies based on rest-frame optical light may not have captured the mass-weighted structural evolution of galaxies. This paper represents a first step towards a new understanding of the morphologies of early massive galaxies enabled by JWST's infrared window into the distant universe.Comment: Accepted to ApJL. 10 pages, 4 figures, 1 table with full size catalog in F150W and F444

    Feasibility and safety of planned early discharge following laparotomy in gynecologic oncology with enhanced recovery protocol including opioid-sparing anesthesia

    Get PDF
    ObjectiveThis study aims to evaluate the feasibility and safety of planned postoperative day 1 discharge (PPOD1) among patients who undergo laparotomy (XL) in the department of gynecology oncology utilizing a modified enhanced recovery after surgery (ERAS) protocol including opioid-sparing anesthesia (OSA) and defined discharge criteria.MethodsPatients undergoing XL and minimally invasive surgery (MIS) were enrolled in this prospective, observational cohort study after the departmental implementation of a modified ERAS protocol. The primary outcome was quality of life (QoL) using SF36, PROMIS GI, and ICIQ-FLUTS at baseline and 2- and 6-week postoperative visits. Statistical significance was assessed using the two-tailed Student's t-test and non-parametric Mann–Whitney two-sample test.ResultsOf the 141 subjects, no significant demographic differences were observed between the XL group and the MIS group. The majority of subjects, 84.7% (61), in the XL group had gynecologic malignancy [vs. MIS group; 21 (29.2%), p < 0.001]. All patients tolerated OSA. The XL group required higher intraoperative opioids [7.1 ± 9.2 morphine milligram equivalents (MME) vs. 3.9 ± 6.9 MME, p = 0.02] and longer surgical time (114.2 ± 41 min vs. 96.8 ± 32.1 min, p = 0.006). No significant difference was noted in the opioid requirements at the immediate postoperative phase and the rest of the postoperative day (POD) 0 or POD 1. In the XL group, 69 patients (73.6%) were successfully discharged home on POD1. There was no increase in the PROMIS score at 2 and 6 weeks compared to the preoperative phase. The readmission rates within 30 days after surgery (XL 4.2% vs. MIS 1.4%, p = 0.62), rates of surgical site infection (XL 0% vs. MIS 2.8%, p = 0.24), and mean number of post-discharge phone calls (0 vs. 0, p = 0.41) were comparable between the two groups. Although QoL scores were significantly lower than baseline in four of the nine QoL domains at 2 weeks post-laparotomy, all except physical health recovered by the 6-week time point.ConclusionsPPOD1 is a safe and feasible strategy for XL performed in the gynecologic oncology department. PPOD1 did not increase opioid requirements, readmission rates compared to MIS, and patient-reported constipation and nausea/vomiting compared to the preoperative phase

    JADES + JEMS: A Detailed Look at the Buildup of Central Stellar Cores and Suppression of Star Formation in Galaxies at Redshifts 3 < z < 4.5

    Full text link
    We present a spatially resolved study of stellar populations in 6 galaxies with stellar masses M1010MM_*\sim10^{10}M_\odot at z3.7z\sim3.7 using 14-filter JWST/NIRCam imaging from the JADES and JEMS surveys. The 6 galaxies are visually selected to have clumpy substructures with distinct colors over rest-frame 360041003600-4100\r{A}, including a bright dominant stellar core that is close to their stellar-light centroids. With 23-filter photometry from HST to JWST, we measure the stellar-population properties of individual structural components via SED fitting using Prospector. We find that the central stellar cores are 2\gtrsim2 times more massive than the Toomre mass, indicating they may not form via in-situ fragmentation. The stellar cores have stellar ages of 0.40.70.4-0.7 Gyr that are similar to the timescale of clump inward migration due to dynamical friction, suggesting that they likely instead formed through the coalescence of giant stellar clumps. While they have not yet quenched, the 6 galaxies are below the star-forming main sequence by 0.20.70.2-0.7 dex. Within each galaxy, we find that the specific star formation rate is lower in the central stellar core, and the stellar-mass surface density of the core is already similar to quenched galaxies of the same masses and redshifts. Meanwhile, the stellar ages of the cores are either comparable to or younger than the extended, smooth parts of the galaxies. Our findings are consistent with model predictions of the gas-rich compaction scenario for the buildup of galaxies' central regions at high redshifts. We are likely witnessing the coeval formation of dense central cores, along with the onset of galaxy-wide quenching at z>3z>3.Comment: 32 pages, 16 figures, submitted to ApJ. Comments are welcom

    The galaxies missed by Hubble and ALMA: the contribution of extremely red galaxies to the cosmic census at 3<z<8

    Full text link
    Using deep JWST imaging from JADES, JEMS and SMILES, we characterize optically-faint and extremely red galaxies at z>3z>3 that were previously missing from galaxy census estimates. The data indicate the existence of abundant, dusty and post-starburst-like galaxies down to 10810^8M_\odot, below the sensitivity limit of Spitzer and ALMA. Modeling the NIRCam and HST photometry of these red sources can result in extreme, high values for both stellar mass and star formation rate (SFR); however, including 7 MIRI filters out to 21μ\mum results in decreased mass (median 0.6 dex for log10_{10}M^*/M>_{\odot}>10), and SFR (median 10×\times for SFR>>100 M_{\odot}/yr). At z>6z>6, our sample includes a high fraction of little red dots (LRDs; NIRCam-selected dust-reddened AGN candidates). We significantly measure older stellar populations in the LRDs out to rest-frame 3μ\mum (the stellar bump) and rule out a dominant contribution from hot dust emission, a signature of AGN contamination to stellar population measurements. This allows us to measure their contribution to the cosmic census at z>3z>3, below the typical detection limits of ALMA (LIR<1012LL_{\rm IR}<10^{12}L_\odot). We find that these sources, which are overwhelmingly missed by HST and ALMA, could effectively double the obscured fraction of the star formation rate density at 4<z<64<z<6 compared to some estimates, showing that prior to JWST, the obscured contribution from fainter sources could be underestimated. Finally, we identify five sources with evidence for Balmer breaks and high stellar masses at 5.5<z<7.75.5<z<7.7. While spectroscopy is required to determine their nature, we discuss possible measurement systematics to explore with future data.Comment: submitted to AAS Journals, comments welcome

    Inside the bubble: exploring the environments of reionisation-era Lyman-α emitting galaxies with JADES and FRESCO⋆

    Get PDF
    © 2024 The Author(s). Published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We present a study of the environments of 17 Lyman-α emitting galaxies (LAEs) in the reionisation-era (5.8 5%) observed in our sample of LAEs, suggesting the presence of ionised hydrogen along the line of sight towards at least eight out of 17 LAEs. We find minimum physical 'bubble'sizes of the order of R ion ∼ 0.1- 1pMpc are required in a patchy reionisation scenario where ionised bubbles containing the LAEs are embedded in a fully neutral IGM. Around half of the LAEs in our sample are found to coincide with large-scale galaxy overdensities seen in FRESCO at z ∼ 5.8- 5.9 and z ∼ 7.3, suggesting Lyman-α transmission is strongly enhanced in such overdense regions, and underlining the importance of LAEs as tracers of the first large-scale ionised bubbles. Considering only spectroscopically confirmed galaxies, we find our sample of UV-faint LAEs (M UV ≳ -20mag) and their direct neighbours are generally not able to produce the required ionised regions based on the Lyman-α transmission properties, suggesting lower-luminosity sources likely play an important role in carving out these bubbles. These observations demonstrate the combined power of JWST multi-object and slitless spectroscopy in acquiring a unique view of the early Universe during cosmic reionisation via the most distant LAEs.Peer reviewe

    The Star-forming and Ionizing Properties of Dwarf z~6-9 Galaxies in JADES: Insights on Bursty Star Formation and Ionized Bubble Growth

    Full text link
    Reionization is thought to be driven by faint star-forming galaxies, but characterizing this population in detail has long remained very challenging. Here we utilize deep nine-band NIRCam imaging from JADES to study the star-forming and ionizing properties of 756 z69z\sim6-9 galaxies, including hundreds of very UV-faint objects (MUV>18M_\mathrm{UV}>-18). The faintest (m30m\sim30) galaxies in our sample typically have stellar masses of M(13)×107M_\ast\sim(1-3)\times10^7 MM_\odot and young light-weighted ages (\sim50 Myr), though some show strong Balmer breaks implying much older ages (\sim500 Myr). We find no evidence for extremely massive galaxies (>3×1010>3\times10^{10} MM_\odot) in our sample. We infer a strong (factor >>2) decline in the typical [OIII]++Hβ\beta EWs towards very faint z69z\sim6-9 galaxies, yet a weak UV luminosity dependence on the Hα\alpha EWs at z6z\sim6. We demonstrate that these EW trends can be explained if fainter galaxies have systematically lower metallicities as well as more recently-declining star formation histories relative to the most UV-luminous galaxies in our sample. Our data provide evidence that the brightest galaxies are frequently experiencing a recent strong upturn in SFR. We also discuss how the EW trends may be influenced by a strong correlation between MUVM_\mathrm{UV} and Lyman continuum escape fraction. This alternative explanation has dramatically different implications for the contribution of galaxies along the luminosity function to cosmic reionization, highlighting the need for deep spectroscopic follow-up. Finally, we quantify the photometric overdensities around two z>7z>7 strong Lyα\alpha emitters in the JADES footprint. One Lyα\alpha emitter lies close to a strong photometric overdensity while the other shows no significant nearby overdensity, perhaps implying that not all strong z>7z>7 Lyα\alpha emitters reside in large ionized bubbles.Comment: 29 pages, 16 figures. Submitted to MNRAS. Comments welcom

    The Cosmos in its Infancy: JADES Galaxy Candidates at z > 8 in GOODS-S and GOODS-N

    Get PDF
    © 2024. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/We present a catalog of 717 candidate galaxies at z > 8 selected from 125 square arcmin of NIRCam imaging as part of the JWST Advanced Deep Extragalactic Survey (JADES). We combine the full JADES imaging data set with data from the JWST Extragalactic Medium Survey and First Reionization Epoch Spectroscopic COmplete Survey (FRESCO) along with extremely deep existing observations from Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) for a final filter set that includes 15 JWST/NIRCam filters and five HST/ACS filters. The high-redshift galaxy candidates were selected from their estimated photometric redshifts calculated using a template-fitting approach, followed by visual inspection from seven independent reviewers. We explore these candidates in detail, highlighting interesting resolved or extended sources, sources with very red long-wavelength slopes, and our highest-redshift candidates, which extend to z phot ∼ 18. Over 93% of the sources are newly identified from our deep JADES imaging, including 31 new galaxy candidates at z phot > 12. We also investigate potential contamination by stellar objects, and do not find strong evidence from spectral energy distribution fitting that these faint high-redshift galaxy candidates are low-mass stars. Using 42 sources in our sample with measured spectroscopic redshifts from NIRSpec and FRESCO, we find excellent agreement to our photometric redshift estimates, with no catastrophic outliers and an average difference of 〈Δz = z phot − z spec〉 = 0.26. These sources comprise one of the most robust samples for probing the early buildup of galaxies within the first few hundred million years of the Universe’s history.Peer reviewe
    corecore