943 research outputs found

    Electromagnetic Coupling through Arbitrary Apertures in Parallel Conducting Planes

    Get PDF
    We propose a numerical methodto solve the problem of coupling through finite, but otherwise arbitrary apertures in perfectly conducting and vanishingly thin parallel planes. The problem is given a generic formulation using the Method of Moments and the Green's function in the region between the two planes is evaluated using Ewald's method. Numerical applications using Glisson's basis functions to solve the problem are demonstrated and compared with previously published results and the output of FDTD software

    Topological Isomorphisms of Human Brain and Financial Market Networks

    Get PDF
    Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets – the time series of 90 stocks from the New York stock exchange over a 3-year period, and the fMRI-derived time series acquired from 90 brain regions over the course of a 10-min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular – more highly optimized for information processing – than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph-theoretically mediated interface between systems neuroscience and the statistical physics of financial markets

    ALHAT: Autonomous Landing and Hazard Avoidance Technology

    Get PDF
    The ALHAT project was chartered by NASA HQ in 2006 to develop and mature to TRL 6 an autonomous lunar landing GN&C and sensing system for crewed, cargo, and robotic planetary landing vehicles. The multi-center ALHAT team was tasked with providing a system capable of identifying and avoiding surface hazards in real time to enable safe precision landing to within tens of meters of a designated planetary landing site under any lighting conditions

    Real-Time Hazard Detection and Avoidance Demonstration for a Planetary Lander

    Get PDF
    The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. In addition to precision landing close to a pre-mission defined landing location, the ALHAT System must be capable of autonomously identifying and avoiding surface hazards in real-time to enable a safe landing under any lighting conditions. This paper provides an overview of the recent results of the ALHAT closed loop hazard detection and avoidance flight demonstrations on the Morpheus Vertical Testbed (VTB) at the Kennedy Space Center, including results and lessons learned. This effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN)

    Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle

    Get PDF
    A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions

    Lunar lander and return propulsion system trade study

    Get PDF
    This trade study was initiated at NASA/JSC in May 1992 to develop and evaluate main propulsion system alternatives to the reference First Lunar Outpost (FLO) lander and return-stage transportation system concept. Thirteen alternative configurations were developed to explore the impacts of various combinations of return stage propellants, using either pressure or pump-fed propulsion systems and various staging options. Besides two-stage vehicle concepts, the merits of single-stage and stage-and-a-half options were also assessed in combination with high-performance liquid oxygen and liquid hydrogen propellants. Configurations using an integrated modular cryogenic engine were developed to assess potential improvements in packaging efficiency, mass performance, and system reliability compared to non-modular cryogenic designs. The selection process to evaluate the various designs was the analytic hierarchy process. The trade study showed that a pressure-fed MMH/N2O4 return stage and RL10-based lander stage is the best option for a 1999 launch. While results of this study are tailored to FLO needs, the design date, criteria, and selection methodology are applicable to the design of other crewed lunar landing and return vehicles

    COBALT CoOperative Blending of Autonomous Landing Technology

    Get PDF
    COBALT is a terrestrial test platform for development and maturation of GN&C (Guidance, Navigation and Control) technologies for PL&HA (Precision Landing and Hazard Avoidance). The project is developing a third generation, Langley Navigation Doppler Lidar (NDL) for ultra-precise velocity and range measurements, which will be integrated and tested with the JPL Lander Vision System (LVS) for Terrain Relative Navigation (TRN) position estimates. These technologies together provide navigation that enables controlled precision landing. The COBALT hardware will be integrated in 2017 into the GN&C subsystem of the Xodiac rocket-propulsive Vertical Test Bed (VTB) developed by Masten Space Systems (MSS), and two terrestrial flight campaigns will be conducted: one open-loop (i.e., passive) and one closed-loop (i.e., active)

    RNA Bind-n-Seq: Quantitative Assessment of the Sequence and Structural Binding Specificity of RNA Binding Proteins

    Get PDF
    Specific protein-RNA interactions guide posttranscriptional gene regulation. Here, we describe RNA Bind-n-Seq (RBNS), a method that comprehensively characterizes sequence and structural specificity of RNA binding proteins (RBPs), and its application to the developmental alternative splicing factors RBFOX2, CELF1/CUGBP1, and MBNL1. For each factor, we recovered both canonical motifs and additional near-optimal binding motifs. RNA secondary structure inhibits binding of RBFOX2 and CELF1, while MBNL1 favors unpaired Us but tolerates C/G pairing in motifs containing UGC and/or GCU. Dissociation constants calculated from RBNS data using a novel algorithm correlated highly with values measured by surface plasmon resonance. Motifs identified by RBNS were conserved, were bound and active in vivo, and distinguished the subset of motifs enriched by CLIP-Seq that had regulatory activity. Together, our data demonstrate that RBNS complements crosslinking-based methods and show that in vivo binding and activity of these splicing factors is driven largely by intrinsic RNA affinity.National Science Foundation (U.S.) (0821391

    The regulation of miRNAs by reconstituted high-density lipoproteins in diabetes-impaired angiogenesis

    Get PDF
    Diabetic vascular complications are associated with impaired ischaemia-driven angiogenesis. We recently found that reconstituted high-density lipoproteins (rHDL) rescue diabetes-impaired angiogenesis. microRNAs (miRNAs) regulate angiogenesis and are transported within HDL to sites of injury/repair. The role of miRNAs in the rescue of diabetes-impaired angiogenesis by rHDL is unknown. Using a miRNA array, we found that rHDL inhibits hsa-miR-181c-5p expression in vitro and using a hsa-miR-181c-5p mimic and antimiR identify a novel anti-angiogenic role for miR-181c-5p. miRNA expression was tracked over time post-hindlimb ischaemic induction in diabetic mice. Early post-ischaemia when angiogenesis is important, rHDL suppressed hindlimb mmu-miR-181c-5p. mmu-miR-181c-5p was not detected in the plasma or within HDL, suggesting rHDL specifically targets mmu-miR-181c-5p at the ischaemic site. Three known angiogenic miRNAs (mmu-miR-223-3p, mmu-miR-27b-3p, mmu-miR-92a-3p) were elevated in the HDL fraction of diabetic rHDL-infused mice early post-ischaemia. This was accompanied by a decrease in plasma levels. Only mmu-miR-223-3p levels were elevated in the hindlimb 3 days post-ischaemia, indicating that rHDL regulates mmu-miR-223-3p in a time-dependent and site-specific manner. The early regulation of miRNAs, particularly miR-181c-5p, may underpin the rescue of diabetes-impaired angiogenesis by rHDL and has implications for the treatment of diabetes-related vascular complications
    corecore