2,554 research outputs found

    The structure of the PapD-PapGII pilin complex reveals an open and flexible P5 pocket

    Get PDF
    P pili are hairlike polymeric structures that mediate binding of uropathogenic Escherichia coli to the surface of the kidney via the PapG adhesin at their tips. PapG is composed of two domains: a lectin domain at the tip of the pilus followed by a pilin domain that comprises the initial polymerizing subunit of the 1,000-plus-subunit heteropolymeric pilus fiber. Prior to assembly, periplasmic pilin domains bind to a chaperone, PapD. PapD mediates donor strand complementation, in which a beta strand of PapD temporarily completes the pilin domain's fold, preventing premature, nonproductive interactions with other pilin subunits and facilitating subunit folding. Chaperone-subunit complexes are delivered to the outer membrane usher where donor strand exchange (DSE) replaces PapD's donated beta strand with an amino-terminal extension on the next incoming pilin subunit. This occurs via a zip-in-zip-out mechanism that initiates at a relatively accessible hydrophobic space termed the P5 pocket on the terminally incorporated pilus subunit. Here, we solve the structure of PapD in complex with the pilin domain of isoform II of PapG (PapGIIp). Our data revealed that PapGIIp adopts an immunoglobulin fold with a missing seventh strand, complemented in parallel by the G1 PapD strand, typical of pilin subunits. Comparisons with other chaperone-pilin complexes indicated that the interactive surfaces are highly conserved. Interestingly, the PapGIIp P5 pocket was in an open conformation, which, as molecular dynamics simulations revealed, switches between an open and a closed conformation due to the flexibility of the surrounding loops. Our study reveals the structural details of the DSE mechanism

    Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates

    Get PDF
    Background Fermentation of bioethanol using lignocellulosic biomass as a raw material provides a sustainable alternative to current biofuel production methods by utilising waste food streams as raw material. Before lignocellulose can be fermented it requires physical, chemical and enzymatic treatment in order to release monosaccharides, a process that causes the chemical transformation of glucose and xylose into the cyclic aldehydes furfural and hydroxyfurfural. These furan compounds are potent inhibitors of Saccharomyces fermentation, and consequently furfural tolerant strains of Saccharomyces are required for lignocellulosic fermentation. Results This study investigated yeast tolerance to furfural and hydroxyfurfural using a collection of 71 environmental and industrial isolates of the baker’s yeast Saccharomyces cerevisiae and its closest relative Saccharomyces paradoxus. The Saccharomyces strains were initially screened for growth on media containing 100 mM glucose and 1.5 mg ml-1 furfural. Five strains were identified that showed a significant tolerance to growth in the presence of furfural and these were then screened for growth and ethanol production in the presence of increasing amounts (0.1-4 mg ml-1) of furfural. Conclusions Of the five furfural tolerant strains S. cerevisiae NCYC 3451 displayed the greatest furfural resistance, and was able to grow in the presence of up to 3.0 mg ml-1 furfural. Furthermore, ethanol production in this strain did not appear to be inhibited by furfural, with the highest ethanol yield observed at 3.0 mg ml-1 furfural. Although furfural resistance was not found to be a trait specific to any one particular lineage or population, three of the strains were isolated from environments where they might be continually exposed to low levels of furfural through the on-going natural degradation of lignocelluloses, and would therefore develop elevated levels of resistance to these furan compounds. Thus these strains represent good candidates for future studies of genetic variation relevant to understanding and manipulating furfural resistance and in the development of tolerant ethanologenic yeast strains for use in bioethanol production from lignocellulose processing

    Light-Driven H2 Evolution and C═C or C═O Bond Hydrogenation by Shewanella oneidensis : A Versatile Strategy for Photocatalysis by Nonphotosynthetic Microorganisms

    Get PDF
    Photocatalytic chemical synthesis by coupling abiotic photosensitizers to purified enzymes provides an effective way to overcome the low conversion efficiencies of natural photosynthesis while exploiting the high catalytic rates and selectivity of enzymes as renewable, earth-abundant electrocatalysts. However, the selective synthesis of multiple products requires more versatile approaches and should avoid the time-consuming and costly processes of enzyme purification. Here we demonstrate a cell-based strategy supporting light-driven H2 evolution or the hydrogenation of C═C and C═O bonds in a nonphotosynthetic microorganism. Methylviologen shuttles photoenergized electrons from water-soluble photosensitizers to enzymes that catalyze H2 evolution and the reduction of fumarate, pyruvate, and CO2 in Shewanella oneidensis. The predominant reaction is selected by the experimental conditions, and the results allow rational development of cell-based strategies to harness nature’s intrinsic catalytic diversity for selective light-driven synthesis of a wide range of products

    Clinical significance of VEGF-A, -C and -D expression in esophageal malignancies

    Get PDF
    Vascular endothelial growth factors ( VEGF)- A, - C and - D are members of the proangiogenic VEGF family of glycoproteins. VEGF-A is known to be the most important angiogenic factor under physiological and pathological conditions, while VEGF-C and VEGF-D are implicated in the development and sprouting of lymphatic vessels, so called lymphangiogenesis. Local tumor progression, lymph node metastases and hematogenous tumor spread are important prognostic factors for esophageal carcinoma ( EC), one of the most lethal malignancies throughout the world. We found solid evidence in the literature that VEGF expression contributes to tumor angiogenesis, tumor progression and lymph node metastasis in esophageal squamous cell carcinoma ( SCC), and many authors could show a prognostic value for VEGF-assessment. In adenocarcinoma (AC) of the esophagus angiogenic properties are acquired in early stages, particularly in precancerous lesions like Barrett's dysplasia. However, VEGF expression fails to give prognostic information in AC of the esophagus. VEGF-C and VEGF-D were detected in SCC and dysplastic lesions, but not in normal mucosa of the esophagus. VEGF-C expression might be associated with lymphatic tumor invasion, lymph node metastases and advanced disease in esophageal SCC and AC. Therapeutic interference with VEGF signaling may prove to be a promising way of anti-angiogenic co-treatment in esophageal carcinoma. However, concrete clinical data are still pending

    Simulation of propofol anaesthesia for intracranial decompression using brain hypothermia treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although propofol is commonly used for general anaesthesia of normothermic patients in clinical practice, little information is available in the literature regarding the use of propofol anaesthesia for intracranial decompression using brain hypothermia treatment. A novel propofol anaesthesia scheme is proposed that should promote such clinical application and improve understanding of the principles of using propofol anaesthesia for hypothermic intracranial decompression.</p> <p>Methods</p> <p>Theoretical analysis was carried out using a previously-developed integrative model of the thermoregulatory, hemodynamic and pharmacokinetic subsystems. Propofol kinetics is described using a framework similar to that of this model and combined with the thermoregulation subsystem through the pharmacodynamic relationship between the blood propofol concentration and the thermoregulatory threshold. A propofol anaesthesia scheme for hypothermic intracranial decompression was simulated using the integrative model.</p> <p>Results</p> <p>Compared to the empirical anaesthesia scheme, the proposed anaesthesia scheme can reduce the required propofol dosage by more than 18%.</p> <p>Conclusion</p> <p>The integrative model of the thermoregulatory, hemodynamic and pharmacokinetic subsystems is effective in analyzing the use of propofol anaesthesia for hypothermic intracranial decompression. This propofol infusion scheme appears to be more appropriate for clinical application than the empirical one.</p

    Ideal and actual involvement of community pharmacists in health promotion and prevention: a cross-sectional study in Quebec, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increased interest is observed in broadening community pharmacists' role in public health. To date, little information has been gathered in Canada on community pharmacists' perceptions of their role in health promotion and prevention; however, such data are essential to the development of public-health programs in community pharmacy. A cross-sectional study was therefore conducted to explore the perceptions of community pharmacists in urban and semi-urban areas regarding their ideal and actual levels of involvement in providing health-promotion and prevention services and the barriers to such involvement.</p> <p>Methods</p> <p>Using a five-step modified Dillman's tailored design method, a questionnaire with 28 multiple-choice or open-ended questions (11 pages plus a cover letter) was mailed to a random sample of 1,250 pharmacists out of 1,887 community pharmacists practicing in Montreal (Quebec, Canada) and surrounding areas. It included questions on pharmacists' ideal level of involvement in providing health-promotion and preventive services; which services were actually offered in their pharmacy, the employees involved, the frequency, and duration of the services; the barriers to the provision of these services in community pharmacy; their opinion regarding the most appropriate health professionals to provide them; and the characteristics of pharmacists, pharmacies and their clientele.</p> <p>Results</p> <p>In all, 571 out of 1,234 (46.3%) eligible community pharmacists completed and returned the questionnaire. Most believed they should be very involved in health promotion and prevention, particularly in smoking cessation (84.3%); screening for hypertension (81.8%), diabetes (76.0%) and dyslipidemia (56.9%); and sexual health (61.7% to 89.1%); however, fewer respondents reported actually being very involved in providing such services (5.7% [lifestyle, including smoking cessation], 44.5%, 34.8%, 6.5% and 19.3%, respectively). The main barriers to the provision of these services in current practice were lack of: time (86.1%), coordination with other health care professionals (61.1%), staff or resources (57.2%), financial compensation (50.8%), and clinical tools (45.5%).</p> <p>Conclusions</p> <p>Although community pharmacists think they should play a significant role in health promotion and prevention, they recognize a wide gap between their ideal and actual levels of involvement. The efficient integration of primary-care pharmacists and pharmacies into public health cannot be envisioned without addressing important organizational barriers.</p

    Analysis of a panel of antibodies to APC reveals consistent activity towards an unidentified protein

    Get PDF
    Acquisition of truncating mutations in the adenomatous polyposis coli (APC) protein underlies the progression of the majority of sporadic and familial colorectal cancers. As such, the localisation patterns and interacting partners of APC have been extensively studied in a range of systems, relying on the use of a broad panel of antibodies. Until recently, antibodies to APC have been used largely unchecked. However, several recent reports have been invaluable in clarifying the use of a number of antibodies commonly used to detect APC. Here, we analyse the specificity of a further subset of antibodies to APC. We used a panel of six commercially available antibodies (directed to the amino and carboxy termini of APC) and confirm the detection of full-length APC by immunoblotting. We demonstrate that a 150 kDa protein, also reproducibly detected by this panel of antibodies, is unlikely to be APC. We present data for the immunological staining patterns of the APC antibodies and validate the results through RNAi. Using this approach, we confirm that the apical staining pattern, observed by immunofluorescence and previously reported in cell systems, is unlikely to be APC. Finally, we present our data as a summary of APC-antibody specificities for APC
    corecore