34,976 research outputs found

    The threatened status of restricted-range coral reef fish species

    Get PDF
    Coral reefs are the most diverse ecosystem in the sea. Throughout the world they are being overfished, polluted and destroyed, placing biodiversity at risk. To date, much of the concern over biodiversity loss has centred on local losses and the possibility of global extinction has largely been discounted. However, recent research has shown that 24% of reef fish species have restricted ranges (< 800 000 km(2)), with 9% highly restricted (< 50 000 km(2)). Restricted-range species are thought to face a greater risk of extinction than more widespread species since local impacts could cause global loss. We searched for information on status in the wild and characteristics of 397 restricted-range reef fish species. Fish body size, habitat requirements and usefulness to people were compared with those of a taxonomically-matched sample of more widespread species. We found that on average species with restricted ranges were significantly smaller (mean total length 19.1 cm versus 24.4 cm), tended to have narrower habitat requirements and were less used by people. Greater habitat specificity will tend to increase extinction risk while, if real, more limited usefulness (equivalent to exploitation) may reduce risk. Fifty-eight percent of restricted-range species were considered common/abundant in the wild and 42% uncommon/rare. Population status and threats to 319 species for which data were available were assessed according to the categories and criteria of the IUCN red list of threatened animals. A number of species were found to be rare, were exploited and had highly restricted ranges overlapping areas where reef degradation is particularly severe, placing them at a high risk of extinction. Five species were listed as Critically Endangered, two of them possibly already extinct in the wild, one as Endangered and 172 as Vulnerable. A further 126 species fell into Lower Risk categories and 11 were considered Data Deficient. Given the intensity of impacts to reefs, the broad geographical areas affected and the large numbers of restricted-range species, global extinctions seem likely. Urgent management action is now crucial for the survival of several species of reef fishes

    On the complexion of pseudoscalar mesons

    Full text link
    A strongly momentum-dependent dressed-quark mass function is basic to QCD. It is central to the appearance of a constituent-quark mass-scale and an existential prerequisite for Goldstone modes. Dyson-Schwinger equation (DSEs) studies have long emphasised this importance, and have proved that QCD's Goldstone modes are the only pseudoscalar mesons to possess a nonzero leptonic decay constant in the chiral limit when chiral symmetry is dynamically broken, while the decay constants of their radial excitations vanish. Such features are readily illustrated using a rainbow-ladder truncation of the DSEs. In this connection we find (in GeV): f_{eta_c(1S)}= 0.233, m_{eta_c(2S)}=3.42; and support for interpreting eta(1295), eta(1470) as the first radial excitations of eta(548), eta'(958), respectively, and K(1460) as the first radial excitation of the kaon. Moreover, such radial excitations have electromagnetic diameters greater than 2fm. This exceeds the spatial length of lattices used typically in contemporary lattice-QCD.Comment: 7 pages, 2 figures. Contribution to the proceedings of the "10th International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon (MENU04)," IHEP, Beijing, China, 30/Aug.-4/Sept./0

    Quantum effects with an X-ray free electron laser

    Full text link
    A quantum kinetic equation coupled with Maxwell's equation is used to estimate the laser power required at an XFEL facility to expose intrinsically quantum effects in the process of QED vacuum decay via spontaneous pair production. A 9 TW-peak XFEL laser with photon energy 8.3 keV could be sufficient to initiate particle accumulation and the consequent formation of a plasma of spontaneously produced pairs. The evolution of the particle number in the plasma will exhibit non-Markovian aspects of the strong-field pair production process and the plasma's internal currents will generate an electric field whose interference with that of the laser leads to plasma oscillations.Comment: 4 pages, LaTeX2

    Pair creation and plasma oscillations

    Get PDF
    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background field and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses.Comment: 11 pages, revteX, epsfig.sty, 5 figures; Proceedings of 'Quark Matter in Astro- and Particlephysics', a workshop at the University of Rostock, Germany, November 27 - 29, 2000. Eds. D. Blaschke, G. Burau, S.M. Schmid

    Finite time collapse of N classical fields described by coupled nonlinear Schrodinger equations

    Full text link
    We prove the finite-time collapse of a system of N classical fields, which are described by N coupled nonlinear Schrodinger equations. We derive the conditions under which all of the fields experiences this finite-time collapse. Finally, for two-dimensional systems, we derive constraints on the number of particles associated with each field that are necessary to prevent collapse.Comment: v2: corrected typo on equation

    Solving the Bethe-Salpeter equation for a pseudoscalar meson in Minkowski space

    Full text link
    A new method of solution of the Bethe-Salpeter equation for a pseudoscalar quark-antiquark bound state is proposed. With the help of an integral representation, the results are directly obtained in Minkowski space. Dressing of Green's functions is naturally taken into account, thus providing the possible inclusion of a running coupling constant as well as quark propagators. First numerical results are presented for a simplified ladder approximation

    Development of Prognosis in Palliative care Study (PiPS) predictor models to improve prognostication in advanced cancer: prospective cohort study

    Get PDF
    OBJECTIVE: To develop a novel prognostic indicator for use in patients with advanced cancer that is significantly better than clinicians' estimates of survival. DESIGN: Prospective multicentre observational cohort study. SETTING: 18 palliative care services in the UK (including hospices, hospital support teams, and community teams). PARTICIPANTS: 1018 patients with locally advanced or metastatic cancer, no longer being treated for cancer, and recently referred to palliative care services. MAIN OUTCOME MEASURES: Performance of a composite model to predict whether patients were likely to survive for "days" (0-13 days), "weeks" (14-55 days), or "months+" (>55 days), compared with actual survival and clinicians' predictions. RESULTS: On multivariate analysis, 11 core variables (pulse rate, general health status, mental test score, performance status, presence of anorexia, presence of any site of metastatic disease, presence of liver metastases, C reactive protein, white blood count, platelet count, and urea) independently predicted both two week and two month survival. Four variables had prognostic significance only for two week survival (dyspnoea, dysphagia, bone metastases, and alanine transaminase), and eight variables had prognostic significance only for two month survival (primary breast cancer, male genital cancer, tiredness, loss of weight, lymphocyte count, neutrophil count, alkaline phosphatase, and albumin). Separate prognostic models were created for patients without (PiPS-A) or with (PiPS-B) blood results. The area under the curve for all models varied between 0.79 and 0.86. Absolute agreement between actual survival and PiPS predictions was 57.3% (after correction for over-optimism). The median survival across the PiPS-A categories was 5, 33, and 92 days and survival across PiPS-B categories was 7, 32, and 100.5 days. All models performed as well as, or better than, clinicians' estimates of survival. CONCLUSIONS: In patients with advanced cancer no longer being treated, a combination of clinical and laboratory variables can reliably predict two week and two month survival

    An Expansion Term In Hamilton's Equations

    Get PDF
    For any given spacetime the choice of time coordinate is undetermined. A particular choice is the absolute time associated with a preferred vector field. Using the absolute time Hamilton's equations are −(δHc)/(δq)=π˙+Θπ,- (\delta H_{c})/(\delta q)=\dot{\pi}+\Theta\pi, + (\delta H_{c})/(\delta \pi)=\dot{q},where, where \Theta = V^{a}_{.;a}istheexpansionofthevectorfield.Thusthereisahithertounnoticedtermintheexpansionofthepreferredvectorfield.Hamilton′sequationscanbeusedtodescribefluidmotion.Inthiscasetheabsolutetimeisthetimeassociatedwiththefluid′sco−movingvector.Asmeasuredbythisabsolutetimetheexpansiontermispresent.Similarlyincosmology,eachobserverhasaco−movingvectorandHamilton′sequationsagainhaveanexpansionterm.ItisnecessarytoincludetheexpansiontermtoquantizesystemssuchastheabovebythecanonicalmethodofreplacingDiracbracketsbycommutators.Hamilton′sequationsinthisformdonothaveacorrespondingsympleticform.Replacingtheexpansionbyaparticlenumber is the expansion of the vector field. Thus there is a hitherto unnoticed term in the expansion of the preferred vector field. Hamilton's equations can be used to describe fluid motion. In this case the absolute time is the time associated with the fluid's co-moving vector. As measured by this absolute time the expansion term is present. Similarly in cosmology, each observer has a co-moving vector and Hamilton's equations again have an expansion term. It is necessary to include the expansion term to quantize systems such as the above by the canonical method of replacing Dirac brackets by commutators. Hamilton's equations in this form do not have a corresponding sympletic form. Replacing the expansion by a particle number N\equiv exp(-\int\Theta d \ta)andintroducingtheparticlenumbersconjugatemomentum and introducing the particle numbers conjugate momentum \pi^{N}thestandardsympleticformcanberecoveredwithtwoextrafieldsNand the standard sympletic form can be recovered with two extra fields N and \pi^N$. Briefly the possibility of a non-standard sympletic form and the further possibility of there being a non-zero Finsler curvature corresponding to this are looked at.Comment: 10 page
    • …
    corecore