3,931 research outputs found

    FCGR3B copy number variation is associated with systemic lupus erythematosus risk in Afro-Caribbeans.

    Get PDF
    OBJECTIVES: To evaluate FCGR3B copy number variation (CNV) in African and European populations and to determine if FCGR3B copy number is associated with SLE and SLE nephritis risk in Afro-Caribbeans, adjusting for African genetic ancestry. METHODS: We estimated FCGR3B to determine if there were ethnic variations in CNV (unrelated unadmixed Europeans and Africans). We then examined CNV at FCGR3B in relation to SLE and SLE nephritis within a case-control collection of 134 cases of SLE (37 with SLE nephritis) and 589 population controls of mainly Afro-Caribbean descent resident in Trinidad. RESULTS: We found a significant difference in copy number FCGR3B distribution between unadmixed African and European UK cohorts, with 27 (29%) vs 3 (5%) for those with low (0 or 1) copy FCGR3B, respectively, P = 0.002. In a Trinidadian SLE case-control study, low FCGR3B CNV was associated with SLE risk 1.7 (95% CI 1.1, 2.8), P = 0.02, which remained after adjustment for African genetic ancestry; odds ratios (ORs) 1.7 (95% CI 1.0, 2.8), P = 0.04. CONCLUSION: Our studies suggest that FCGR3B low copy number is associated with SLE risk in Afro-Caribbean populations independently of CNV due to African ancestry

    Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection

    Get PDF
    Background: Voice disorders affect patients profoundly, and acoustic tools can potentially measure voice function objectively. Disordered sustained vowels exhibit wide-ranging phenomena, from nearly periodic to highly complex, aperiodic vibrations, and increased "breathiness". Modelling and surrogate data studies have shown significant nonlinear and non-Gaussian random properties in these sounds. Nonetheless, existing tools are limited to analysing voices displaying near periodicity, and do not account for this inherent biophysical nonlinearity and non-Gaussian randomness, often using linear signal processing methods insensitive to these properties. They do not directly measure the two main biophysical symptoms of disorder: complex nonlinear aperiodicity, and turbulent, aeroacoustic, non-Gaussian randomness. Often these tools cannot be applied to more severe disordered voices, limiting their clinical usefulness.

Methods: This paper introduces two new tools to speech analysis: recurrence and fractal scaling, which overcome the range limitations of existing tools by addressing directly these two symptoms of disorder, together reproducing a "hoarseness" diagram. A simple bootstrapped classifier then uses these two features to distinguish normal from disordered voices.

Results: On a large database of subjects with a wide variety of voice disorders, these new techniques can distinguish normal from disordered cases, using quadratic discriminant analysis, to overall correct classification performance of 91.8% plus or minus 2.0%. The true positive classification performance is 95.4% plus or minus 3.2%, and the true negative performance is 91.5% plus or minus 2.3% (95% confidence). This is shown to outperform all combinations of the most popular classical tools.

Conclusions: Given the very large number of arbitrary parameters and computational complexity of existing techniques, these new techniques are far simpler and yet achieve clinically useful classification performance using only a basic classification technique. They do so by exploiting the inherent nonlinearity and turbulent randomness in disordered voice signals. They are widely applicable to the whole range of disordered voice phenomena by design. These new measures could therefore be used for a variety of practical clinical purposes.
&#xa

    The Consequences of Cold Water Immersion: Impacts and Treatment

    Get PDF
    This paper documents a demonstration project conducted by the authors under the auspices of the Irish Naval service. It explores and describes in detail the consequences that cold water immersion can have on the human body. Further, this study investigates post immersion treatment and survival challenges and proposes appropriate casualty care regimes with specific focus on ‘post rescue collapse’ and ‘afterdrop.’ Observations of individual differences in response are reported

    Stability of Negative Image Equilibria in Spike-Timing Dependent Plasticity

    Full text link
    We investigate the stability of negative image equilibria in mean synaptic weight dynamics governed by spike-timing dependent plasticity (STDP). The neural architecture of the model is based on the electrosensory lateral line lobe (ELL) of mormyrid electric fish, which forms a negative image of the reafferent signal from the fish's own electric discharge to optimize detection of external electric fields. We derive a necessary and sufficient condition for stability, for arbitrary postsynaptic potential functions and arbitrary learning rules. We then apply the general result to several examples of biological interest.Comment: 13 pages, revtex4; uses packages: graphicx, subfigure; 9 figures, 16 subfigure

    Observing the 2017 Total Solar Eclipse in the skies above Central Missouri, USA

    Get PDF
    We report the work and findings of Arkansas BalloonSAT in participating in the 2017 Eclipse Ballooning Project. Arkansas BalloonSAT was the site-team for Missouri and launched a high altitude balloon from Fulton High School in Fulton, MO an hour prior to totality. This balloon reached an apogee of 24 kilometers shortly after floating for one minute in the moon\u27s umbra. In addition to live-streaming video from one payload as part of the Eclipse Ballooning Project, our mission included carrying a scientific payload and educational outreach. This report will summarize those efforts and include an examination of balloon kinematics with the cooling effect of the moon\u27s umbra and aircraft-balloon interaction. We further discuss developments in the system to minimize payload size for future eclipse studies

    Macroscelideans (Myohyracinae and Rhynchocyoninae) from the late Oligocene Nsungwe formation of the Rukwa Rift Basin, southwestern Tanzania

    Get PDF
    The fossil record of macroscelidean mammals is notoriously patchy, with a significant spatial and temporal gap separating faunas from the early Oligocene localities of northern Africa and the early Miocene localities of eastern and southern Africa. Here we describe fossil macroscelideans representing Myohyracinae and Rhynchocyoninae recovered from a rift-fill sequence of richly fossiliferous sandstones in the late Oligocene Nsungwe Formation in the Rukwa Rift Basin of southwestern Tanzania. Radiometrically dated to 25.2 Ma, a new Palaeogene myohyracine taxon (Rukwasengi butleri) is represented by a partial maxilla (RRBP 05409) preserving a lightly worn M2-M3. The M2 exhibits a less hypsodont and mesiodistally elongate morphology than the early Miocene Myohyrax oswaldi, and the three-rooted M3 exhibits a tiny mesially positioned fossette. A new rhynchocyonine (Oligorhynchocyon songwensis) is represented by specimens more brachyodont than the early Miocene Miorhynchocyon. Taken together these finds document a rare window into macroscelidean evolutionary history with diversification of the group near the Palaeogene-Neogene Transition (PNT). Continued exploration offers a refined perspective on mid-Cenozoic faunal and ecosystem dynamics on continental Africa, expanding opportunities for recognising trends in palaeobiological diversity across habitat types and through time

    Stability transitions for axisymmetric relative equilibria of Euclidean symmetric Hamiltonian systems

    Get PDF
    In the presence of noncompact symmetry, the stability of relative equilibria under momentum-preserving perturbations does not generally imply robust stability under momentum-changing perturbations. For axisymmetric relative equilibria of Hamiltonian systems with Euclidean symmetry, we investigate different mechanisms of stability: stability by energy-momentum confinement, KAM, and Nekhoroshev stability, and we explain the transitions between these. We apply our results to the Kirchhoff model for the motion of an axisymmetric underwater vehicle, and we numerically study dissipation induced instability of KAM stable relative equilibria for this system.Comment: Minor revisions. Typographical errors correcte

    Multi‐scale effects of land cover, weather, and fire on Columbian sharp‐tailed grouse

    Get PDF
    Columbian sharp‐tailed grouse (Tympanuchus phasianellus columbianus) are endemic to grassland and shrub‐steppe ecosystems of western North America, yet their distribution has contracted to \u3c10% of their historical range. Primary threats to Columbian sharp‐tailed grouse include loss of native habitat and conversion to agriculture, reductions in habitat once provided by the Conservation Reserve Program (CRP), wildfire, and drought conditions, yet population‐level consequences of these threats and their spatio‐temporal scales of effect are poorly understood. We evaluated multi‐scale effects of land cover, weather, and fire histories on patterns of abundance and productivity for Columbian sharp‐tailed grouse populations during 1995–2020 in Idaho, USA, using mixedeffects generalized regression and remotely sensed data. We demonstrated negative effects of fire, tree encroachment, and bare ground, positive effects of spring and summer precipitation and cover of shrubs and perennial forbs and grasses, and positive effects of CRP on grouse abundance that changed in magnitude with cover of perennials and shrubs near leks (i.e., strongest effects when average cover of shrubs and perennial forbs and grasses were less abundant). We also demonstrated per capita recruitment of Columbian sharp‐tailed grouse is positively associated with late‐summer greenness. Our results show that several suspected threats have measurable, population‐level impacts to Columbian sharp‐tailed grouse within Idaho. Moreover, our results suggest ongoing changes occurring within the core range of Columbian sharp‐tailed grouse, including loss of CRP cover to tilled agriculture and changes to wildfire and precipitation dynamics are likely to have negative effects on populations

    The Conservation Reserve Program: Economic Implications for Rural America

    Get PDF
    This report estimates the impact that high levels of enrollment in the Conservation Reserve Program (CRP) have had on economic trends in rural counties since the program's inception in 1985 until today. The results of a growth model and quasi-experimental control group analysis indicate no discernible impact by the CRP on aggregate county population trends. Aggregate employment growth may have slowed in some high-CRP counties, but only temporarily. High levels of CRP enrollment appear to have affected farm-related businesses over the long run, but growth in the number of other nonfarm businesses moderated CRP's impact on total employment. If CRP contracts had ended in 2001, simulation models suggest that roughly 51 percent of CRP land would have returned to crop production, and that spending on outdoor recreation would decrease by as much as $300 million per year in rural areas. The resulting impacts on employment and income vary widely among regions having similar CRP enrollments, depending upon local economic conditions.Community/Rural/Urban Development, Land Economics/Use,

    Population dynamics and harvest management of eastern mallards

    Get PDF
    Managing sustainable harvest of wildlife populations requires regular collection of demographic data and robust estimates of demographic parameters. Estimates can then be used to develop a harvest strategy to guide decision‐making. Mallards (Anas platyrhynchos) are an important species in the Atlantic Flyway for many users and they exhibited exponential growth in the eastern United States between the 1970s and 1990s. Since then, estimates of mallard abundance have declined 16%, prompting the Atlantic Flyway Council and United States Fish and Wildlife Service to implement more restrictive hunting regulations and develop a new harvest strategy predicated on an updated population model. Our primary objective was to develop an integrated population model (IPM) for use in an eastern mallard harvest management strategy. We developed an IPM using annual estimates of breeding abundance, 2‐season banding and recovery data, and hunterharvest data from 1998 to 2018.When developing the model, we used novel model selection methods to test various forms of a submodel for survival including estimating the degree of harvest additivity and any age‐specific trends. The top survival sub‐model included a negative annual trend on juvenile survival. The IPM posterior estimates for population abundance tracked closely with the observed estimates and estimates of mean annual population growth rate ranged from 0.88 to 1.08. Our population model provided increased precision in abundance estimates compared to survey methods for use in an updated harvest strategy. The IPM posterior estimates of survival rates were relatively stable for adult cohorts, and annual growth rate was positively correlated with the female age ratio, a measure of reproduction. Either or both of those demographic parameters, juvenile survival or reproduction, could be a target for management efforts to address the population decline. The resulting demographic parameters provided information on the equilibrium population size and can be used in an adaptive harvest strategy for mallards in eastern North America
    • 

    corecore