3 research outputs found

    Knowledge Management Patterns Model for a Flight Test Environment

    No full text
    This paper investigates how Knowledge Management patterns in a Brazilian Air Force flight test environment can be simulated using a System Dynamics approach. The research has been conducted initially by a literature review on the main Knowledge Management and System Dynamics theories. Data for this research has been collected in a previous study consisted of documental research regarding the flight test environment Knowledge Management and a questionnaire-based survey which identified both a low Knowledge Management maturity level and the flight test core competence as the capability of performing flight test campaigns. The issued problem was the tradeoff between actions focused on performing flight test campaigns versus Knowledge Management to transfer the core competence inside organization in order to keep it in a high level. A system dynamics qualitative model has been developed as a result of this research. Fluxes and stokes were identified within the model and the relation between them emerged by identifying systemic feedback loops that may compromise the Knowledge Management and the core competence transferring. These features enable a holistic visualization and better understanding of the problem as well as the possibilities of identifying ways of improvement

    Comparison of In-Flight Measured and Computed Aeroelastic Damping: Modal Identification Procedures and Modeling Approaches

    No full text
    The Operational Modal Analysis technique is a methodology very often applied for the identification of dynamic systems when the input signal is unknown. The applied methodology is based on a technique to estimate the Frequency Response Functions and extract the modal parameters using only the structural dynamic response data, without assuming the knowledge of the excitation forces. Such approach is an adequate way for measuring the aircraft aeroelastic response due to random input, like atmospheric turbulence. The in-flight structural response has been measured by accelerometers distributed along the aircraft wings, fuselage and empennages. The Enhanced Frequency Domain Decomposition technique was chosen to identify the airframe dynamic parameters. This technique is based on the hypothesis that the system is randomly excited with a broadband spectrum with almost constant power spectral density. The system identification procedure is based on the Single Value Decomposition of the power spectral densities of system output signals, estimated by the usual Fast Fourier Transform method. This procedure has been applied to different flight conditions to evaluate the modal parameters and the aeroelastic stability trends of the airframe under investigation. The experimental results obtained by this methodology were compared with the predicted results supplied by aeroelastic numerical models in order to check the consistency of the proposed output-only methodology. The objective of this paper is to compare in-flight measured aeroelastic damping against the corresponding parameters computed from numerical aeroelastic models. Different aerodynamic modeling approaches should be investigated such as the use of source panel body models, cruciform and flat plate projection. As a result of this investigation it is expected the choice of the better aeroelastic modeling and Operational Modal Analysis techniques to be included in a standard aeroelastic certification process
    corecore