25 research outputs found

    The SOAR Optical Imager

    Get PDF
    The SOAR Optical Imager (SOI) is the commissioning instrument for the 4.2-m SOAR telescope, which is sited on Cerro Pachón, and due for first light in April 2003. It is being built at Cerro Tololo Inter-American Observatory, and is one of a suite of first-light instruments being provided by the four SOAR partners (NOAO, Brazil, University of North Carolina, Michigan State University). The instrument is designed to produce precision photometry and to fully exploit the expected superb image quality of the SOAR telescope, over a 6x6 arcmin field. Design goals include maintaining high throughput down to the atmospheric cut-off, and close reproduction of photometric passbands throughout 310-1050nm. The focal plane consists of a two-CCD mosaic of 2Kx4K Lincoln Labs CCDs, following an atmospheric dispersion corrector, focal reducer, and tip-tilt sensor. Control and data handling are within the LabVIEW-Linux environment used throughout the SOAR Project

    ISPI: the infared side port imager for the CITO 4-m telescope

    Get PDF
    The new operations model for the CTIO Blanco 4-m telescope will use a small suite of fixed facility instruments for imaging and spectroscopy. The Infrared Side Port Imager, ISPI, provides the infrared imaging capability. We describe the optical, mechanical, electronic, and software components of the instrument. The optical design is a refractive camera-collimator system. The cryo-mechanical packaging integrates two LN2-cooled dewars into a compact, straightline unit to fit within space constraints at the bent Cassegrain telescope focus. A HAWAII 2 2048 x 2048 HgCdTe array is operated by an SDSU II array controller. Instrument control is implemented with ArcVIEW, a proprietary LabVIEW-based software package. First light on the telescope is planned for September 2002

    The SOAR optical imager: status and first results

    Get PDF
    We briefly describe the SOAR Optical Imager (SOI), the first light instrument for the 4.1m SOuthern Astronomical Research (SOAR) telescope now being commissioned on Cerro Pachón in the mountains of northern Chile. The SOI has a mini-mosaic of 2 2kx4k CCDs at its focal plane, a focal reducer camera, two filter cartridges, and a linear ADC. The instrument was designed to produce precision photometry and to fully exploit the expected superb image quality of the SOAR telescope over a 5.5x5.5 arcmin2 field with high throughput down to the atmospheric cut-off, and close reproduction of photometric pass-bands throughout 310-1050 nm. During early engineering runs in April 2004, we used the SOI to take images as part of the test program for the actively controlled primary mirror of the SOAR telescope, one of which we show in this paper. Taken just three months after the arrival of the optics in Chile, we show that the stellar images have the same diameter of 0.74" as the simultaneously measured seeing disk at the time of observation. We call our image "Engineering 1st Light" and in the near future expect to be able to produce images with diameters down to 0.3" in the R band over a 5.5' field during about 20% of the observing time, using the tip-tilt adaptive corrector we are implementing

    The SOAR Optical Imager

    Get PDF
    The SOAR Optical Imager (SOI) is the commissioning instrument for the 4.2-m SOAR telescope, which is sited on Cerro Pachón, and due for first light in April 2003. It is being built at Cerro Tololo Inter-American Observatory, and is one of a suite of first-light instruments being provided by the four SOAR partners (NOAO, Brazil, University of North Carolina, Michigan State University). The instrument is designed to produce precision photometry and to fully exploit the expected superb image quality of the SOAR telescope, over a 6x6 arcmin field. Design goals include maintaining high throughput down to the atmospheric cut-off, and close reproduction of photometric passbands throughout 310-1050nm. The focal plane consists of a two-CCD mosaic of 2Kx4K Lincoln Labs CCDs, following an atmospheric dispersion corrector, focal reducer, and tip-tilt sensor. Control and data handling are within the LabVIEW-Linux environment used throughout the SOAR Project

    ISPI: the infared side port imager for the CITO 4-m telescope

    Get PDF
    The new operations model for the CTIO Blanco 4-m telescope will use a small suite of fixed facility instruments for imaging and spectroscopy. The Infrared Side Port Imager, ISPI, provides the infrared imaging capability. We describe the optical, mechanical, electronic, and software components of the instrument. The optical design is a refractive camera-collimator system. The cryo-mechanical packaging integrates two LN2-cooled dewars into a compact, straightline unit to fit within space constraints at the bent Cassegrain telescope focus. A HAWAII 2 2048 x 2048 HgCdTe array is operated by an SDSU II array controller. Instrument control is implemented with ArcVIEW, a proprietary LabVIEW-based software package. First light on the telescope is planned for September 2002

    The SOAR optical imager: status and first results

    Get PDF
    We briefly describe the SOAR Optical Imager (SOI), the first light instrument for the 4.1m SOuthern Astronomical Research (SOAR) telescope now being commissioned on Cerro Pachón in the mountains of northern Chile. The SOI has a mini-mosaic of 2 2kx4k CCDs at its focal plane, a focal reducer camera, two filter cartridges, and a linear ADC. The instrument was designed to produce precision photometry and to fully exploit the expected superb image quality of the SOAR telescope over a 5.5x5.5 arcmin2 field with high throughput down to the atmospheric cut-off, and close reproduction of photometric pass-bands throughout 310-1050 nm. During early engineering runs in April 2004, we used the SOI to take images as part of the test program for the actively controlled primary mirror of the SOAR telescope, one of which we show in this paper. Taken just three months after the arrival of the optics in Chile, we show that the stellar images have the same diameter of 0.74" as the simultaneously measured seeing disk at the time of observation. We call our image "Engineering 1st Light" and in the near future expect to be able to produce images with diameters down to 0.3" in the R band over a 5.5' field during about 20% of the observing time, using the tip-tilt adaptive corrector we are implementing

    Decoupling of soil nutrient cycles as a function of aridity in global drylands

    Get PDF
    18 páginas.- 10 figuras.- 72 referencias.- Online Content Any additional Methods, Extended Data display items and Source Data are available in the online version of the paper; references unique to these sections appear only in the online paper..- Puede conseguir el texto completo en el Portal de la producción científica de la Universidad Complutense de Madrid https://produccioncientifica.ucm.es/documentos/5ec78dc52999520a1d557660 .- o en lel respositorio institucional CONICET digital https://ri.conicet.gov.ar/bitstream/handle/11336/29204/CONICET_Digital_Nro.ead4e2ed-0da6-4041-814b-259e8f27bbf6_D.pdf?sequence=5&isAllowed=yThe biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems1. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elements by biological and geochemical processes1,2,3,4,5. Climatic controls on biogeochemical cycles are particularly relevant in arid, semi-arid and dry sub-humid ecosystems (drylands) because their biological activity is mainly driven by water availability6,7,8. The increase in aridity predicted for the twenty-first century in many drylands worldwide9,10,11 may therefore threaten the balance between these cycles, differentially affecting the availability of essential nutrients12,13,14. Here we evaluate how aridity affects the balance between C, N and P in soils collected from 224 dryland sites from all continents except Antarctica. We find a negative effect of aridity on the concentration of soil organic C and total N, but a positive effect on the concentration of inorganic P. Aridity is negatively related to plant cover, which may favour the dominance of physical processes such as rock weathering, a major source of P to ecosystems, over biological processes that provide more C and N, such as litter decomposition12,13,14. Our findings suggest that any predicted increase in aridity with climate change will probably reduce the concentrations of N and C in global drylands, but increase that of P. These changes would uncouple the C, N and P cycles in drylands and could negatively affect the provision of key services provided by these ecosystems.This research is supported by the European Research Council (ERC) under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 242658 (BIOCOM), and by the Ministry of Science and Innovation of the Spanish Government, grant no. CGL2010-21381. CYTED funded networking activities (EPES, Acción 407AC0323). M.D.-B. was supported by a PhD fellowship from the Pablo de Olavide University.Peer reviewe
    corecore