17 research outputs found

    Staging Glaucoma Patient: Why and How?

    Get PDF
    Staging glaucomatous damage into appropriatecategories enhances management of the disease. Automated static perimetry is the benchmark for testing visual function in glaucoma. Numerous examples of standard automated perimetry staging systems have been proposed but difficulties such as lack of accuracy, absence of information related to location and depth of the defect(s) and need of time-consuming analysis of every visual field test result may reduce their day-to-day clinical usefulness.A new visual field staging system is proposed: the University of São Paulo Glaucoma Visual Field Staging System (USP-GVFSS). In this system, qualitative and quantitative characteristics of the visual field defect are described. The method is intuitive, comprehensible and describes severity, extension and hemi field involvement

    The Effect of Prostaglandin Analogs and Prostamide on Central Corneal Thickness

    No full text
    Objective: The aim of this study was to verify the influence of prostaglandin analogs and prostamide on central corneal thickness (CCT). Methods: A prospective analysis was done of CCT in glautomatous patients submitted to monotherapy with prostaglandin analogs (latanoprost 0.005% or travoprost 0.004%) or prostamide (bimatoprost 0.03%) during an 8-week period. A control group of patients without any ocular medication was also evaluated. CCT measurements were performed with a commercially available ultrasound pachymeter. A total of 73 patients were included in this study. Mean age was 68.5 +/- 9.2 (range, 48-85) years old. Results: A statistically significant reduction in CCT was observed in all groups, except the control group (n = 21): Bimatoprost 0.03% group (n = 21): 544.41 +/- 35.4 vs. 540.35 +/- 35.9 mu m (P = 0.039); travoprost 0.004% group (n = 17): 538.47 +/- 32.0 vs. 532.25 +/- 30.4 mu m (P = 0.009); latanoprost 0.005% group (n = 14): 548.57 +/- 32.4 vs. 543.88 +/- 35.6 mu m (P = 0.036). Conclusion: Topical therapy with prostaglandin analogs and bimatoprost is associated with CCT reduction over a period of at least 8 weeks

    Comparison of Quantitative Imaging Devices and Subjective Optic Nerve Head Assessment by General Ophthalmologists to Differentiate Normal From Glaucomatous Eyes

    No full text
    Purpose: To compare the ability of Subjective assessment of optic nerve head (ONH) and retinal nerve fiber layer (RNFL) by general ophthalmologists and by a glaucoma expert with objective measurements by optical coherence tomography (Stratus OCT, Carl Zeiss Meditec Inc), confocal scanning laser ophthalmoscope (HRT III; Heidelberg Engineering, Heidelberg. Germany), and scanning laser polarimetry (GDx enhanced corneal compensation; Carl Zeiss Meditec Inc, Dublin, CA) in discriminating glaucomatous and normal eyes. Methods: Sixty-one glaucomatous and 57 normal eyes or 118 subjects Were included in the study. Three independent general ophthalmologists and I glaucoma expert evaluated ONH stereo-photographs. Receiver operating characteristic curves were constructed for each imaging technique and sensitivity at fixed specificity was estimated. Comparisons or areas under these curves (aROCs) and agreement (k) were determined between stereophoto grading and best parameter from each technique. Results: Best parameter from each technique showed larger aROC (Stratus OCT RNFL 0.92; Stratus OCT ONH vertical integrated area = 0.86; Stratus OCT macular thickness = 0.82; GDx enhanced corneal compensation = 0.91, HRT3 global cup-to-disc ratio = 0.83; HRT3 glaucoma probability score numeric area score 0.83) compared with stereophotograph grading by general ophthalmologists (0.80) in separating glaucomatous and normal eyes. Glaucoma expert stereophoto grading provided equal or larger aROC (0.92) than best parameter of each computerized imaging device. Stereophoto evaluated by a glaucoma expert showed better agreement with best parameter of each quantitative imaging technique in classifying eyes either as glaucomatous or normal compared with stereophoto grading by general ophthalmologists, The combination Of Subjective assessment of the optic disc by general ophthalmologists with RNFL objective parameters improved identification of glaucoma patients in a larger proportion than the combination of these objective parameters with Subjective assessment of the optic disc by a glaucoma expert (29.5% vs. 19.7%, respectively). Conclusions: Diagnostic ability of all imaging techniques showed better performance than subjective assessment of the ONH by general ophthalmologists, but not by It glaucoma expert, Objective RNFL measurements may provide improvement in glaucoma detection when combined with subjective assessment of the optic disc by general ophthalmologists or by a glaucoma expert

    Structure-function relationships in glaucoma using enhanced depth imaging optical coherence tomography-derived parameters: a cross-sectional observational study

    No full text
    Abstract Background To investigate structural and functional correlations in glaucoma patients using enhanced depth imaging spectral-domain optical coherence tomography (EDI OCT)-derived parameters. Methods We prospectively enrolled healthy participants and glaucomatous patients with a wide range of disease stages. All participants underwent visual field (VF) testing (SITA - Standard 24–2; Carl Zeiss Meditec, Dublin, CA) and EDI OCT imaging (Spectralis; Heidelberg Engineering Co., Heidelberg, Germany). The following optic nerve head parameters were measured on serial vertical EDI OCT B-scans by two experienced examiners masked to patients clinical data: lamina cribrosa (LC) thickness and area, prelaminar neural tissue thickness and area, anterior LC depth, Bruch’s membrane opening (BMO) and average, superior, and inferior BMO-minimum rim width (BMO-MRW). Only good quality images were considered, and whenever both eyes were eligible, one was randomly selected for analysis. Scatter plots were constructed to investigate correlations between each anatomic parameter and patient’s VF status (based on VF index [VFI] values). Results A total of 73 eyes of 73 patients were included. All EDI OCT parameters evaluated differed significantly between glaucomatous and control eyes (P ≤ 0.045). A secondary analysis, in which glaucomatous patients were divided according to VF mean deviation index values into 3 groups (mild [G1; > − 6 dB], moderate [G2; − 6 to − 12 dB] and advanced [G3; <− 12 dB] glaucoma), revealed that average BMO-MRW was the EDI OCT parameter that presented more significant differences between the different stages of glaucoma. Significant structure-function correlations were found between VFI values and prelaminar neural tissue area (R2 = 0.20, P = 0.017), average BMO-MRW (R2 = 0.35, P ≤ 0.001), superior BMO-MRW (R2 = 0.21, P = 0.012), and inferior BMO-MRW (R2 = 0.27, P = 0.002). No significant correlations were found for LC area and anterior LC depth (P ≥ 0.452). Conclusions Evaluating the distribution pattern and structure-function correlations of different laminar and prelaminar EDI OCT-derived parameters in glaucomatous patients, we found better results for neural tissue-based indexes (compared to LC-derived parameters). The diagnostic utility of each parameter deserves further investigations

    In vivo analysis of glaucoma-related features within the optic nerve head using enhanced depth imaging optical coherence tomography

    No full text
    Structural differences between optic nerve head (ONH) parameters in glaucomatous and non-glaucomatous eyes has been documented, however the association between such parameters in patients with different disease stages is yet to be elucidated. We investigated the relationship between different laminar and prelaminar ONH structures using enhanced depth imaging spectral-domain optical coherence tomography (EDI OCT) in a population with and without glaucoma. In this observational case-control study, we prospectively enrolled healthy individuals and glaucomatous patients with different disease stages. All participants underwent EDI OCT imaging (Heidelberg Engineering). Following ONH parameters were measured on serial vertical B-scans by two examiners masked to patient's clinical data: lamina cribrosa (LC) and prelaminar neural tissue (PLNT) thicknesses, Bruch's membrane opening (BMO) and cup depth. Associations between cup depth, and laminar and prelaminar parameters were evaluated controlling for possible confounding factors such as axial length and disc size. Sixty-four eyes of 64 patients were included (30 with glaucoma and 34 controls). Eyes with glaucoma had significantly lower mean LC and PLNT thickness, and greater mean cup depth than controls (p<0.01). There was a significant negative association between PLNT thickness and cup depth in glaucomatous eyes (R-2 = 0.158, p = 0.029). In addition, LC thickness correlated significantly with cup depth (R-2 = 0.135, p = 0.045). Eyes with thinner LCs presented deeper cups. Overall, cup depth and BMO had the best and LC thickness had the worst intraobserver and interobserver reproducibility grading. In conclusion, significant associations were seen between cup depth, LC and PLNT thickness. Eyes with deeper cups not only had less neural tissue, but also thinner LCs, independent of disc size and axial length. Best reproducibility was found for prelaminar parameters compared to deeper ONH structures.Univ Fed Sao Paulo, Dept Ophthalmol, Glaucoma Serv, Sao Paulo, BrazilHosp Med Olhos, Glaucoma Unit, Osasco, BrazilMayo Clin, Jacksonville, FL 32224 USAUniv Fed Sao Paulo, Dept Ophthalmol, Glaucoma Serv, Sao Paulo, BrazilWeb of Scienc
    corecore