34 research outputs found

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    DIAPH1-MFN2 interaction decreases the endoplasmic reticulum-mitochondrial distance and promotes cardiac injury following myocardial ischemia

    No full text
    Contact between organelles such as the mitochondria (Mito) and endoplasmic reticulum (ER) is crucial to coordinate vital cellular homeostatic processes. Here we discuss recent work showing that Mito-ER proximity is regulated by heterotypic complexes between the F-actin polymerizing protein Diaphanous-1) and the mitochondrial dynamics protein Mitofusin 2, which confers increased susceptibility to ischemia/reperfusion injury

    Science and health policies to tackle chronic diseases in Chile

    No full text
    Chile has experienced rapid epidemiological transitions characterized by decreasing infant mortality, population aging, and a shift towards obesity with an increase in noncommunicable diseases (NCDs). Today, tobacco, alcohol, and ultraprocessed foods are the main risk factors for these diseases. Based on Chile's experience in tobacco control, we discuss paths tomake progress in population evidence-based strategies to improve overall community health.Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) FONDAP 15130011 FONDECYT 1161156 PAI77170004 Universidad de Chile FIDA/ABCvital 02-2018 U-Inicia UI-006/1

    Glucocorticoid Receptor β Overexpression Has Agonist-Independent Insulin-Mimetic Effects on HepG2 Glucose Metabolism

    No full text
    Glucocorticoids (GC) are steroids hormones that drive circulating glucose availability through gluconeogenesis in the liver. However, alternative splicing of the GR mRNA produces two isoforms, termed GRα and GRβ. GRα is the classic receptor that binds to GCs and mediates the most described actions of GCs. GRβ does not bind GCs and acts as a dominant-negative inhibitor of GRα. Moreover, GRβ has intrinsic and GRα-independent transcriptional activity. To date, it remains unknown if GRβ modulates glucose handling in hepatocytes. Therefore, the study aims to characterize the impact of GRβ overexpression on glucose uptake and storage using an in vitro hepatocyte model. Here we show that GRβ overexpression inhibits the induction of gluconeogenic genes by dexamethasone. Moreover, GRβ activates the Akt pathway, increases glucose transports mRNA, increasing glucose uptake and glycogen storage as an insulin-mimetic. Our results suggest that GRβ has agonist-independent insulin-mimetic actions in HepG2 cells

    Tumor Suppression and Promotion by Autophagy

    No full text
    © 2014 Yenniffer Ávalos et al. Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, inclu

    Autophagy mediates calcium-sensing receptor-induced TNFα production in human preadipocytes

    No full text
    © 2018 Elsevier B.V. Obesity is a major current public health problem worldwide due to the severe co-morbid conditions that this disease entails. The development of obesity-related cardiometabolic disorders is in direct association with adipose tissue inflammation that leads to its functional impairment. Activation of the Calcium-Sensing Receptor (CaSR) in adipose tissue contributes to inflammation and adipose dysfunction. Autophagy, a process of cell component degradation, is closely related to inflammation in many diseases, however, whether autophagy is associated with CaSR-induced inflammation remains unknown. Using LS14 and SW872 preadipose cell lines as well as primary human preadipocytes, we show that CaSR activation with the allosteric activator cinacalcet induces autophagosome formation. Cinacalcet-induced LC3II content elevation was precluded by knockdown of the CaSR and enhanced by CaSR overexpression, indicating a specific effect. Autophagy inhibition using 3-methyladenine

    mTORC1 inhibitor rapamycin and ER stressor tunicamycin induce differential patterns of ER-mitochondria coupling

    No full text
    Efficient mitochondrial Ca2+ uptake takes place at contact points between the ER and mitochondria, and represents a key regulator of many cell functions. In a previous study with HeLa cells, we showed that ER-to-mitochondria Ca2+ transfer increases during the early phase of ER stress induced by tunicamycin as an adaptive response to stimulate mitochondrial bioenergetics. It remains unknown whether other types of stress signals trigger similar responses. Here we observed that rapamycin, which inhibits the nutrient-sensing complex mTORC1, increased ER-mitochondria coupling in HeLa cells to a similar extent as did tunicamycin. Interestingly, although global responses to both stressors were comparable, there were notable differences in the spatial distribution of such changes. While tunicamycin increased organelle proximity primarily in the perinuclear region, rapamycin increased organelle contacts throughout the entire cell. These differences were paralleled by dissimilar alterations in the distribution of regulatory proteins of the ER-mitochondria interface, heterogeneities in mitochondrial Ca2+ uptake, and the formation of domains within the mitochondrial network with varying mitochondrial transmembrane potential. Collectively, these data suggest that while increasing ER-mitochondria coupling appears to represent a general response to cell stress, the intracellular distribution of the associated responses needs to be tailored to meet specific cellular requirements.CONICYT FONDAP 15130011 FONDECYT 1161156 11150282 Postdoctoral FONDECYT 3160226 3150510 NIH HL097768 HL09805

    Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells

    No full text
    Chronic hypoxia exacerbates proliferation of pulmonary arterial smooth muscle cells (PASMC), thereby reducing the lumen of pulmonary arteries. This leads to poor blood oxygenation and cardiac work overload, which are the basis of diseases such as pulmonary artery hypertension (PAH). Recent studies revealed an emerging role of mitochondria in PAH pathogenesis, as key regulators of cell survival and metabolism. In this work, we assessed whether hypoxia-induced mitochondrial fragmentation contributes to the alterations of both PASMC death and proliferation. In previous work in cardiac myocytes, we showed that trimetazidine (TMZ), a partial inhibitor of lipid oxidation, stimulates mitochondrial fusion and preserves mitochondrial function. Thus, here we evaluated whether TMZ-induced mitochondrial fusion can prevent human PASMC proliferation in an in vitro hypoxic model. Using confocal fluorescence microscopy, we showed that prolonged hypoxia (48 h) induces mitochondrial fragmentation along with higher levels of the mitochondrial fission protein DRP1. Concomitantly, both mitochondrial potential and respiratory rates decreased, indicative of mitochondrial dysfunction. In accordance with a metabolic shift towards non-mitochondrial ATP generation, mRNA levels of glycolytic markers HK2, PFKFB2 and GLUT1 increased during hypoxia. Incubation of PASMC with TMZ, prior to hypoxia, prevented all these changes and precluded the increase in PASMC proliferation. These findings were also observed using Mdivi-1 (a pharmacological DRP1 inhibitor) or a dominant negative DRP1 K38A as pre-treatments. Altogether, our data indicate that TMZ exerts a protective role against hypoxia-induced PASMC proliferation, by preserving mitochondrial function, thus highlighting DRP1-dependent morphology as a novel therapeutic approach for diseases such as PAH.Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), Chile: FONDAP 15130011 / FONDECYT 1141198 1150282 1150359 1140329 1161156 / FONDECYT postdoctoral fellowship 3160226 / PAI Insertion Program grant 7915000
    corecore