27 research outputs found
Optimization of respiratory-gated auricular vagus afferent nerve stimulation for the modulation of blood pressure in hypertension
BackgroundThe objective of this pilot study was to identify frequency-dependent effects of respiratory-gated auricular vagus afferent nerve stimulation (RAVANS) on the regulation of blood pressure and heart rate variability in hypertensive subjects and examine potential differential effects by sex/gender or race.MethodsTwenty hypertensive subjects (54.55 ± 6.23 years of age; 12 females and 8 males) were included in a within-person experimental design and underwent five stimulation sessions where they received RAVANS at different frequencies (i.e., 2 Hz, 10 Hz, 25 Hz, 100 Hz, or sham stimulation) in a randomized order. EKG and continuous blood pressure signals were collected during a 10-min baseline, 30-min stimulation, and 10-min post-stimulation periods. Generalized estimating equations (GEE) adjusted for baseline measures were used to evaluate frequency-dependent effects of RAVANS on heart rate, high frequency power, and blood pressure measures, including analyses stratified by sex and race.ResultsAdministration of RAVANS at 100 Hz had significant overall effects on the reduction of heart rate (β = −2.03, p = 0.002). It was also associated with a significant reduction of diastolic (β = −1.90, p = 0.01) and mean arterial blood pressure (β = −2.23, p = 0.002) in Black hypertensive participants and heart rate in female subjects (β = −2.83, p = 0.01) during the post-stimulation period when compared to sham.ConclusionRespiratory-gated auricular vagus afferent nerve stimulation exhibits frequency-dependent rapid effects on the modulation of heart rate and blood pressure in hypertensive patients that may further differ by race and sex. Our findings highlight the need for the development of optimized stimulation protocols that achieve the greatest effects on the modulation of physiological and clinical outcomes in this population
EEG-informed fMRI analysis during a hand grip task: estimating the relationship between EEG rhythms and the BOLD signal.
In the last decade, an increasing interest has arisen in investigating the relationship between the electrophysiological and hemodynamic measurements of brain activity, such as EEG and (BOLD) fMRI. In particular, changes in BOLD have been shown to be associated with changes in the spectral profile of neural activity, rather than with absolute power. Concurrently, recent findings showed that different EEG rhythms are independently related to changes in the BOLD signal: therefore, it would be also important to distinguish between the contributions of the different EEG rhythms to BOLD fluctuations when modeling the relationship between the two signals. Here we propose a method to perform EEG-informed fMRI analysis where the changes in the spectral profile are modeled, and, at the same time, the distinction between rhythms is preserved. We compared our model with two other frequency-dependent regressors modeling using simultaneous EEG-fMRI data from healthy subjects performing a motor task. Our results showed that the proposed method better captures the correlations between BOLD signal and EEG rhythms modulations, identifying task-related, well localized activated volumes. Furthermore, we showed that including among the regressors also EEG rhythms not primarily involved in the task enhances the performance of the analysis, even when only correlations with BOLD signal and specific EEG rhythms are explore
Brain Circuitry Supporting Multi-Organ Autonomic Outflow in Response to Nausea
While autonomic outflow is an important co-factor of nausea physiology, central control of this outflow is poorly understood.We evaluated
sympathetic (skin conductance level) and cardiovagal (high-frequency heart rate variability) modulation, collected synchronously with functional
MRI (fMRI) data during nauseogenic visual stimulation aimed to induce vection in susceptible individuals. Autonomic data guided analysis of neuroimaging data, using a stimulus-based (analysis windows set by visual stimulation protocol) and percept-based (windows set by subjects’ ratings) approach. Increased sympathetic and decreased parasympathetic modulation was associated with robust and anti-correlated brain activity in response to nausea. Specifically, greater autonomic response was associated with reduced fMRI signal in brain regions such as the insula, suggesting an inhibitory relationship with premotor brainstem nuclei. Interestingly, some sympathetic/parasympathetic specificity was noted. Activity in default mode network and visual motion areas was anti-correlated with parasympathetic outflow at peak nausea. In contrast, lateral prefrontal cortical activity was anticorrelated
with sympathetic outflow during recovery, soon after cessation of nauseogenic stimulation. These results suggest divergent central autonomic control for sympathetic and parasympathetic response to nausea. Autonomic outflow and the central autonomic network underlying ANS response to nausea may be an important determinant of overall nausea intensity and, ultimately, a potential therapeutic target
International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)
Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice
Electroceuticals and Magnetoceuticals in Gastroenterology
In the realm of gastroenterology, the inadequacy of current medical treatments for gastrointestinal (GI) motility disorders and inflammatory bowel disease (IBD), coupled with their potential side effects, necessitates novel therapeutic approaches. Neuromodulation, targeting the nervous system’s control of GI functions, emerges as a promising alternative. This review explores the promising effects of vagal nerve stimulation (VNS), magnetic neuromodulation, and acupuncture in managing these challenging conditions. VNS offers targeted modulation of GI motility and inflammation, presenting a potential solution for patients not fully relieved from traditional medications. Magnetic neuromodulation, through non-invasive means, aims to enhance neurophysiological processes, showing promise in improving GI function and reducing inflammation. Acupuncture and electroacupuncture, grounded in traditional medicine yet validated by modern science, exert comprehensive effects on GI physiology via neuro-immune-endocrine mechanisms, offering relief from motility and inflammatory symptoms. This review highlights the need for further research to refine these interventions, emphasizing their prospective role in advancing patient-specific management strategies for GI motility disorders and IBD, thus paving the way for a new therapeutic paradigm
EEG-based index for engagement level monitoring during sustained attention
This paper investigates the relation between mental engagement level and sustained attention in 9 healthy adults performing a Conners' "not-X" continuous performance test (CPT), while their electroencephalographic (EEG) activity was simultaneously acquired. Spectral powers were estimated and extracted in the classical EEG frequency bands. The engagement index (β/α) was calculated employing four different cortical montages suggested by the literature. Results show the efficacy of the estimated measures in detecting changes in mental state and its correlation with subject reaction times throughout the test. Moreover, the influence of the recording sites was proved underling the role of frontal cortex in maintaining a constant sustained attention level
EEG-based index for engagement level monitoring during sustained attention
This paper investigates the relation between mental engagement level and sustained attention in 9 healthy adults performing a Conners' "not-X" continuous performance test (CPT), while their electroencephalographic (EEG) activity was simultaneously acquired. Spectral powers were estimated and extracted in the classical EEG frequency bands. The engagement index (beta/alpha) was calculated employing four different cortical montages suggested by the literature
Parcel-Based Connectivity Analysis of fMRI Data for the Study of Epileptic Seizure Propagation
The aim of this work is to improve fMRI Granger Causality Analysis (GCA) by proposing and comparing two strategies for defining the topology of the networks among which cerebral connectivity is measured and to apply fMRI GCA for studying epileptic seizure propagation. The first proposed method is based on information derived from anatomical atlas only; the other one is based on functional information and employs an algorithm of hierarchical clustering applied to fMRI data directly. Both methods were applied to signals recorded during seizures on a group of epileptic subjects and two connectivity matrices were obtained for each patient. The performances of the different parcellation strategies were evaluated in terms of their capability to recover information about the source and the sink of the network (i.e., the starting and the ending point of the seizure propagation). The first method allows to clearly identify the seizure onset in all patients, whereas the network sources are not so immediately recognizable when the second method was used. Nevertheless, results obtained using functional clustering do not contradict those obtained with the anatomical atlas and are able to individuate the main pattern of propagation. In conclusion, the way nodes are defined can influence the easiness of identification of the epileptogenic focus but does not produce contradictory results showing the effectiveness of proposed approach to formulate hypothesis about seizure propagation at least in the early phase of investigation
Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions
The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MTÂ +/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MTÂ +/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MTÂ +/V5 and aIns and between left MTÂ +/V5 and MCC. Additionally, the change in MTÂ +/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity