946 research outputs found

    Towards Business Integration as a Service 2.0

    No full text
    Cloud Computing Business Framework (CCBF) is a framework for designing and implementation of Could Computing solutions. This proposal focuses on how CCBF can help to address linkage in Cloud Computing implementations. This leads to the development of Business Integration as a Service 1.0 (BIaS 1.0) allowing different services, roles and functionalities to work together in a linkage-oriented framework where the outcome of one service can be input to another, without the need to translate between domains or languages. BIaS 2.0 aims to allow full automation, enhanced security, advanced risk modelling and improved collaboration between processes in BIaaS 1.0. The benefits from adopting BIaS 1.0 and developing BIaS 2.0 are illustrated using a case study from the University of Southampton and several collaborators including IBM US. BIaS 2.0 can work with mainstream technologies such as scientific workflows, and the proposal and demonstration of BIaaS 2.0 will certainly benefit industry and academia

    Business Integration as a Service

    No full text
    This paper presents Business Integration as a Service (BIaS) which enables connections between services operating in the Cloud. BIaS integrates different services and business activities to achieve a streamline process. We illustrate this integration using two services; Return on Investment (ROI) Measurement as a Service (RMaaS) and Risk Analysis as a Service (RAaaS) in two case studies at the University of Southampton and Vodafone/Apple. The University of Southampton case study demonstrates the cost-savings and the risk analysis achieved, so two services can work as a single service. The Vodafone/Apple case study illustrates statistical analysis and 3D Visualisation of expected revenue and associated risk. These two cases confirm the benefits of BIaS adoption, including cost reduction and improvements in efficiency and risk analysis. Implementation of BIaS in other organisations is also discussed. Important data arising from the integration of RMaaS and RAaaS are useful for management of University of Southampton and potential and current investors for Vodafone/Apple

    Cloud Storage and Bioinformatics in a private cloud deployment: Lessons for Data Intensive research

    No full text
    This paper describes service portability for a private cloud deployment, including a detailed case study about Cloud Storage and bioinformatics services developed as part of the Cloud Computing Adoption Framework (CCAF). Our Cloud Storage design and deployment is based on Storage Area Network (SAN) technologies, details of which include functionalities, technical implementation, architecture and user support. Experiments for data services (backup automation, data recovery and data migration) are performed and results confirm backup automation is completed swiftly and is reliable for data-intensive research. The data recovery result confirms that execution time is in proportion to quantity of recovered data, but the failure rate increases in an exponential manner. The data migration result confirms execution time is in proportion to disk volume of migrated data, but again the failure rate increases in an exponential manner. In addition, benefits of CCAF are illustrated using several bioinformatics examples such as tumour modelling, brain imaging, insulin molecules and simulations for medical training. Our Cloud Storage solution described here offers cost reduction, time-saving and user friendliness

    A view at desktop clouds

    No full text
    Cloud has emerged as a new computing paradigm that promises to move into computing-as-utility era. Desktop Cloud is a new type of Cloud computing. It merges two computing models: Cloud computing and volunteer computing. The aim of Desktop Cloud is to provide Cloud services out of infrastructure that is not made for this purpose in order to reduce running and maintenance costs. This paper discusses this new type of Cloud by comparing it with current Cloud and Desktop Grid models. It, also, presents several research challenges in Desktop Cloud that require further attention

    Performance evaluation of multi-core multi-cluster architecture

    No full text
    A multi-core cluster is a cluster composed of numbers of nodes where each node has a number of processors, each with more than one core within each single chip. Cluster nodes are connected via an interconnection network. Multi-cored processors are able to achieve higher performance without driving up power consumption and heat, which is the main concern in a single-core processor. A general problem in the network arises from the fact that multiple messages can be in transit at the same time on the same network links. This paper considers the communication latencies of a multi-core multi-cluster architecture will be investigated using simulation experiments and measurements under various working conditions

    Wrongful Death and Personal Injuries--Joinder of Causes of Action and Counterclaims

    Get PDF

    Selected Problems of Ohio Legislative Policy: A Proposed Summary Judgment Statute for Ohio

    Get PDF

    Procedure Under the Ohio Summary Judgment Statute

    Get PDF
    • …
    corecore