190 research outputs found
When The Bombs Drop: Reactions to Disconfirmed Prophecy in a Millennial Sect
This article reports the results of an ethnographic study of a millennial Baha\u27i sect whose leader predicted that the world would be devastated by nuclear war on April 29, 1980. Shortly before that date we began a participant-observer study of the sect, and during the following eight months we supplemented our observations by interviewing members and defectors in the four states where the group\u27s leader had a substantial following. The purpose of the investigation was to replicate the classic study of disconfirmed prophecy reported in When Prophecy Fails by Festinger, Riecken, and Schachter. They found that prophetic disconfirmation was followed by an increase in conviction and heightened efforts to recruit new believers. We report contrary findings and explore social psychological factors that might account for the difference between our findings and the results of the Festinger et al. study. We argue that reactions to prophetic failure are shaped less by psychological forces than by social circumstances existing at the time of disconfirmation
Efficient Uncertainty Quantification Applied to the Aeroelastic Analysis of a Transonic Wing
The application of a Point-Collocation Non-Intrusive Polynomial Chaos method to the uncertainty quantification of a stochastic transonic aeroelastic wing problem has been demonstrated. The variation in the transient response of the first aeroelastic mode of a three-dimensional wing in transonic flow due to the uncertainty in free-stream Mach number and angle of attack was studied. A curve-fitting procedure was used to obtain time-independent parameterization of the transient aeroelastic responses. Among the uncertain parameters that characterize the time-dependent transients, the damping factor was chosen for uncertainty quantification, since this parameter can be thought as an indicator for flutter. Along with the mean and the standard deviation of the damping factor, the probability of having flutter for the given uncertainty in the Mach number and the angle of attack has been also calculated. Besides the Point-Collocation Non-Intrusive Polynomial Chaos method, 1000 Latin Hypercube Monte Carlo simulations were also performed to quantify the uncertainty in the damping factor. The results obtained for various statistics of the damping factor including the flutter probability showed that an 8th degree Point-Collocation Non-Intrusive Polynomial Chaos expansion is capable of estimating the statistics at an accuracy level of 1000 Latin Hypercube Monte Carlo simulation with a significantly lower computational cost. In addition to the uncertainty quantification, the response surface approximation, sensitivity analysis, and reconstruction of the transient response via Non-Intrusive Polynomial Chaos were also demonstrated
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications with Multiple Uncertain Input Variables
The accuracy and the computational efficiency of a Point-Collocation Non-Intrusive Polynomial Chaos (NIPC) method applied to stochastic problems with multiple uncertain input variables has been investigated. Two stochastic model problems with multiple uniform random variables were studied to determine the effect of different sampling methods (Random, Latin Hypercube, and Hammersley) for the selection of the collocation points. The effect of the number of collocation points on the accuracy of polynomial chaos expansions were also investigated. The results of the stochastic model problems show that all three sampling methods exhibit a similar performance in terms of the the accuracy and the computational efficiency of the chaos expansions. It has been observed that using a number of collocation points that is twice more than the minimum number required gives a better approximation to the statistics at each polynomial degree. This improvement can be related to the increase of the accuracy of the polynomial coefficients due to the use of more information in their calculation. The results of the stochastic model problems also indicate that for problems with multiple random variables, improving the accuracy of polynomial chaos coefficients in NIPC approaches may reduce the computational expense by achieving the same accuracy level with a lower order polynomial expansion. To demonstrate the application of Point-Collocation NIPC to an aerospace problem with multiple uncertain input variables, a stochastic computational aerodynamics problem which includes the numerical simulation of steady, inviscid, transonic flow over a three-dimensional wing with an uncertain free-stream Mach number and angle of attack has been studied. For this study, a 5th degree Point-Collocation NIPC expansion obtained with Hammersley sampling was capable of estimating the statistics at an accuracy level of 1000 Latin Hypercube Monte Carlo simulations with a significantly lower computational cost
Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.
The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient
The 25th Anniversary of the Baby Doe Rules: Perspectives from the Fields of Law, Health Care, Ethics, and Disability Policy
A highly publicized and controversial case involving the withholding of medical treatment from a “Baby Doe” with Down syndrome gave rise in 1984 to the federal law known as the Baby Doe Rules, which went into effect the following year. The law conditions the grant of federal funds for any state’s child protective services program on the state’s assurance that it can respond to reports of medical neglect, which may include the withholding of medical treatment from disabled infants with life-threatening conditions. Leading scholars and practitioners from the fields of health care, law, ethics, and disability policy who are experts in the field of neonatal medicine and decision-making involving very premature and other medically at-risk infants gathered to provide thoughtful commentary and debate on the occasion of the 25th Anniversary of the Baby Doe Rules. The Georgia State University Law Review will publish a symposium volume on the topic in Fall 2009
The 25th Anniversary of the Baby Doe Rules: Perspectives from the Fields of Law, Health Care, Ethics, and Disability Policy
A highly publicized and controversial case involving the withholding of medical treatment from a “Baby Doe” with Down syndrome gave rise in 1984 to the federal law known as the Baby Doe Rules, which went into effect the following year. The law conditions the grant of federal funds for any state’s child protective services program on the state’s assurance that it can respond to reports of medical neglect, which may include the withholding of medical treatment from disabled infants with life-threatening conditions. Leading scholars and practitioners from the fields of health care, law, ethics, and disability policy who are experts in the field of neonatal medicine and decision-making involving very premature and other medically at-risk infants gathered to provide thoughtful commentary and debate on the occasion of the 25th Anniversary of the Baby Doe Rules. The Georgia State University Law Review will publish a symposium volume on the topic in Fall 2009
- …
