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Efficient Uncertainty Quantification Applied to the
Aeroelastic Analysis of a Transonic Wing

Serhat Hosder∗

Missouri University of Science and Technology, Rolla, MO, 65409, USA
Robert W. Walters† and Michael Balch ‡

Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA

The application of a Point-Collocation Non-Intrusive Polynomial Chaos method to the
uncertainty quantification of a stochastic transonic aeroelastic wing problem has been
demonstrated. The variation in the transient response of the first aeroelastic mode of
a three-dimensional wing in transonic flow due to the uncertainty in free-stream Mach
number and angle of attack was studied. A curve-fitting procedure was used to obtain
time-independent parameterization of the transient aeroelastic responses. Among the un-
certain parameters that characterize the time-dependent transients, the damping factor
was chosen for uncertainty quantification, since this parameter can be thought as an in-
dicator for flutter. Along with the mean and the standard deviation of the damping fac-
tor, the probability of having flutter for the given uncertainty in the Mach number and
the angle of attack has been also calculated. Besides the Point-Collocation Non-Intrusive
Polynomial Chaos method, 1000 Latin Hypercube Monte Carlo simulations were also per-
formed to quantify the uncertainty in the damping factor. The results obtained for various
statistics of the damping factor including the flutter probability showed that an 8th degree
Point-Collocation Non-Intrusive Polynomial Chaos expansion is capable of estimating the
statistics at an accuracy level of 1000 Latin Hypercube Monte Carlo simulation with a
significantly lower computational cost. In addition to the uncertainty quantification, the
response surface approximation, sensitivity analysis, and reconstruction of the transient
response via Non-Intrusive Polynomial Chaos were also demonstrated.

I. Introduction

For the uncertainty modeling and propagation in aeroelastic problems with multiple uncertain input
variables and parameters, computational efficiency becomes an important factor in the selection of the
stochastic method when high-fidelity computational fluid dynamics (CFD) tools are used to calculate the
time-dependent aerodynamic loads. In addition to the computational efficiency, a desired level of accuracy
(confidence) is also sought in the solution of the stochastic fluid-structure interaction problems. Recent
studies1,2 on stochastic CFD problems with multiple uncertain input variables have shown that a Point-
Collocation Non-Intrusive Polynomial Chaos (NIPC) approach is a computationally efficient and accurate
method for uncertainty modeling and propagation compared to some commonly used stochastic methods
such as the crude or Latin Hypercube Monte Carlo (MC). This paper will demonstrate the application of
this Point-Collocation NIPC method to the quantification of uncertainty in a stochastic transonic aeroelastic
wing problem. The variation in the transient aeroelastic response of a three-dimensional wing in transonic
flow due to the uncertainty in free-stream Mach number and angle of attack will be investigated.

The Polynomial chaos (PC) method for the propagation of uncertainty in computational simulations
involves the substitution of uncertain variables and parameters in the governing equations with the poly-
nomial expansions. In general, an intrusive approach will calculate the unknown polynomial coefficients by
projecting the resulting equations onto basis functions (orthogonal polynomials) for different modes. As its
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name suggests, the intrusive approach requires the modification of the deterministic code and this may be
difficult, expensive, and time consuming for many computational problems such as the one considered in
this paper. To overcome the inconveniences associated with the intrusive approach, collocation-based NIPC
methods have been developed for uncertainty modeling and propagation, such as the Point-Collocation1,2

approach to be used in the current study and the Probabilistic Collocation approach developed by Loeven
et al.3 The other NIPC approaches in the literature are based on sampling (Debusschere et al.,4 Reagan et.
al.,5 and Isukapalli6) or quadrature methods (Debusschere et al.4 and Mathelin et al.7) to determine the
projected polynomial coefficients.

Polynomial Chaos has been used for uncertainty quantification in many previous unsteady stochastic
fluid-structure interaction studies.8–10 One difficulty encountered during the use of PC methods in time-
dependent stochastic problems is the degrading accuracy of the approximation in time due to the growing
non-linearity of the response. In this paper, a curve-fitting procedure is used to obtain time-independent
parameterization of the transient aeroelastic responses. With this approach, the coefficients that characterize
the transients are modeled as uncertain response variables. Since they are independent of time, the accuracy
in their approximation should not be affected from the growing non-linearity of the response in time. A
similar approach was implemented by Witteveen et. al.11 in the time-independent characterization of
limit cycle oscillations. In our study, among the uncertain parameters that characterize the time-dependent
transients, the damping factor is chosen for uncertainty quantification, since this parameter can be thought as
an indicator for flutter. In addition to the Point-Collocation NIPC method, the quantification of uncertainty
in the damping factor is also performed with 1000 Latin Hypercube Monte Carlo simulations. Along with
the mean and the standard deviation of the damping factor, the probability of having flutter for the given
uncertainty in the Mach number and the angle of attack will be also calculated in the stochastic analysis.

In the following section, a description of the non-intrusive polynomial chaos approaches including the
Point-Collocation NIPC method is given. Section III includes the details about the stochastic aeroelastic
wing case. Section IV presents the results obtained with the Latin Hypercube Monte Carlo and the Point-
Collocation NIPC methods. The conclusions are given in Section V.

II. Non-Intrusive Polynomial Chaos

The polynomial chaos is a stochastic method, which is based on the spectral representation of the uncer-
tainty. An important aspect of spectral representation of uncertainty is that one may decompose a random
function (or variable) into separable deterministic and stochastic components. For example, for any random
variable (i.e.,α∗) such as velocity, density or pressure in a stochastic fluid dynamics problem, we can write,

α∗(t, "x, "ξ) =
P∑

i=0

αi(t, "x)Ψi("ξ) (1)

where αi(t, "x) is the deterministic component and Ψi("ξ) is the random basis function corresponding to the
ith mode. In the most general case, α∗ can be a function of time t, deterministic independent variable vector
"x, and the n-dimensional standard random variable vector "ξ = (ξ1, ..., ξn) which has a specific probability
distribution. The discrete sum is taken over the number of output modes ,

P + 1 =
(n + p)!

n!p!
(2)

which is a function of the order of polynomial chaos (p) and the number of random dimensions (n). The
basis function ideally takes the form of multi-dimensional Hermite Polynomial to span the n-dimensional
random space when the input uncertainty is Gaussian (unbounded), which was first used by Wiener12,13
in his original work of polynomial chaos. Legendre (Jacobi) and Laguerre polynomials are optimal basis
functions for bounded (uniform) and semi-bounded (exponential) input uncertainty distributions respectively
in terms of the convergence of the statistics. Different basis functions can be used with different input
uncertainty distributions (See Xiu and Karniadakis14 for a detailed description), however the convergence
may be affected depending on the basis function used.15 In the stochastic aeroelasticity problem studied in
this paper, we model the input uncertainties as uniform random variables that have bounded probability
distributions. Therefore, in our Point-Collocation NIPC method described below we use multi-dimensional
Legendre polynomials that are orthogonal in the interval [-1,1] for each random dimension. The detailed
information about polynomial chaos expansions can be found in Walters and Huyse16 and Hosder et al.1
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To model the uncertainty propagation in computational simulations via polynomial chaos with the intru-
sive approach, all dependent variables and random parameters in the governing equations are replaced with
their polynomial chaos expansions. Taking the inner product of the equations, (or projecting each equation
onto kth basis) yield P + 1 times the number of deterministic equations which can be solved by the same
numerical methods applied to the original deterministic system. Although straightforward in theory, an
intrusive formulation for complex problems can be relatively difficult, expensive, and time consuming to im-
plement. To overcome such inconveniences associated with the intrusive approach, non-intrusive polynomial
chaos formulations have been considered for uncertainty propagation.

The objective of the non-intrusive polynomial chaos methods is to obtain approximations of the poly-
nomial coefficients without making any modifications to the deterministic code. Main approaches for non-
intrusive polynomial chaos are sampling based, collocation based, and quadrature methods. To find the
polynomial coefficients αk = αk(t, "x), (k = 0, 1, .., P ) in Equation 1 using sampling based and quadrature
methods, the equation is projected onto kth basis:

〈
α∗(t, "x, "ξ),Ψk("ξ)

〉
=

〈
P∑

i=0

αiΨi("ξ),Ψk("ξ)

〉
(3)

where the inner product of two functions f("ξ) and g("ξ) is defined by
〈
f("ξ)g("ξ)

〉
=

∫

R
f("ξ)g("ξ)pN ("ξ)d"ξ (4)

Here the weight function pN ("ξ) is the probability density function of "ξ and the integral is evaluated on the
support (R) region of this weight function. Using the orthogonality of the basis functions,

〈
α∗(t, "x, "ξ),Ψk("ξ)

〉
= αk

〈
Ψ2

k("ξ)
〉

(5)

we can obtain

αk =

〈
α∗(t, "x, "ξ),Ψk("ξ)

〉

〈
Ψ2

k("ξ)
〉 (6)

In sampling based methods, the main strategy is to compute α∗(t, "x, "ξ)Ψk("ξ) for a number of samples ("ξi

values) and perform averaging to determine the estimate of the inner product
〈
α∗(t, "x, "ξ),Ψk("ξ)

〉
. Quadra-

ture methods calculate the same term, which is an integral over the support of the weight function pN ("ξ),
using numerical quadrature. Once this term is evaluated, both methods (sampling based and quadrature)
use Equation 6 to estimate the projected polynomial coefficients for each mode.

A. Point-Collocation Non-Intrusive Polynomial Chaos

The collocation based NIPC approach starts with replacing the uncertain variables of interest with their
polynomial expansions given by Equation 1. Then, P + 1 vectors ("ξi = {ξ1, ξ2, ..., ξn}i, i = 0, 1, 2, ..., P ) are
chosen in random space for a given PC expansion with P +1 modes and the deterministic code is evaluated at
these points. With the left hand side of Equation (1) known from the solutions of deterministic evaluations
at the chosen random points, a linear system of equations can be obtained:





Ψ0("ξ0) Ψ1("ξ0) · · · ΨP ("ξ0)

Ψ0("ξ1) Ψ1("ξ1) · · · ΨP ("ξ1)
...

...
. . .

...
Ψ0( "ξP ) Ψ1( "ξP ) · · · ΨP ( "ξP )









α0

α1
...

αP




=





α∗("ξ0)

α∗("ξ1)
...

α∗( "ξP )




(7)

The spectral modes (αk) of the random variable, α∗, are obtained by solving the linear system of equations
given above. Using these, mean (µα∗) and the variance (σ2

α∗) of the solution can be obtained by

µα∗ = α0 (8)
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σ2
α∗ =

P∑

i=1

α2
i

〈
Ψ2

i ("ξ)
〉

(9)

The Point-Collocation NIPC was first introduced by Walters17 to approximate the polynomial chaos
coefficients of the metric terms which are required as input stochastic variables for the intrusive polynomial
chaos representation of a stochastic heat transfer problem with geometric uncertainty. In 2006, Hosder et.
al.1 applied this Point-Collocation NIPC method to stochastic fluid dynamics problems with geometric un-
certainty. They demonstrated the efficiency and the accuracy of the NIPC method in terms of modelling
and propagation of an input uncertainty and the quantification of the variation in an output variable. That
study included a single random input variable, and the collocation locations were equally spaced in the
random space. Following that work, Hosder et. al.2 applied the Point-Collocation NIPC to model stochastic
problems with multiple uncertain input variables having uniform probability distributions and investigated
different sampling techniques (Random, Latin Hypercube, and Hammersley) to select the optimum colloca-
tion points. The results of the stochastic model problems showed that all three sampling methods exhibit
a similar performance in terms of the accuracy and the computational efficiency of the chaos expansions.
However, the convergence of the Point-Collocation NIPC statistics obtained with Hammersley and Latin
Hypercube sampling exhibit a much smoother (monotonic) convergence compared to the cases obtained
with random sampling.

The solution of linear problem given by Equation 7 requires P + 1 deterministic function evaluations.
If more than P + 1 samples are chosen, then the over-determined system of equations can be solved using
the Least Squares method. Hosder et. al.2 investigated this option by increasing the number of collocation
points in a systematic way through the introduction of a parameter np defined as

np =
number of samples

P + 1
. (10)

In the solution of stochastic model problems with multiple uncertain variables, they have used np = 1, 2, 3,
and 4 to study the effect of the number of collocation points (samples) on the accuracy of the polynomial
chaos expansions. Their results showed that using a number of collocation points that is twice more than the
minimum number required (np = 2) gives a better approximation to the statistics at each polynomial degree.
This improvement can be related to the increase of the accuracy of the polynomial coefficients due to the use
of more information (collocation points) in their calculation. The results of the stochastic model problems
also indicated that for problems with multiple random variables, improving the accuracy of polynomial chaos
coefficients in NIPC approaches may reduce the computational expense by achieving the same accuracy level
with a lower order polynomial expansion.

III. Stochastic Aeroelastic Transonic Wing Problem

A. Geometry

The wing geometry involved in our study is the AGARD 445.6 Aeroelastic Wing,18 which has been extensively
used in experiments to validate computational aeroelasticity tools19–21 especially in the determination of
flutter boundary at various transonic Mach numbers. The wing has a quarter-chord sweep angle of 45 deg.,
a panel aspect ratio of 1.65, a taper ratio of 0.6576, and a NACA 65A004 airfoil section. Figure 1 shows the
planform view of the AGARD 445.6 Wing. The shapes of the first four structural modes for the AGARD
445.6 Wing and the corresponding model frequencies18 in vacuo are presented in Figure 2. The modes are
first bending (Mode 1), first torsion (Mode 2), second bending (Mode 3), and second torsion (Mode 4). The
details about the wing (various structural versions, experiments, etc.) can be found in the report by Yates.18

B. Computational Methods

For the numerical aeroleastic analysis of the AGARD 445.6 wing in transonic flow, CFL3Dv6.0 code has been
used with the aeroelasticity option enabled to couple the unsteady flow field computation with the dynamic
deformation of the wing. CFL3Dv6.0 is a three-dimensional, structured, finite-volume Navier-Stokes code
capable of solving steady or time-dependent aerodynamic flows ranging from subsonic to supersonic speeds.22
With the assumption of small deformations for the wing geometry which has a small thickness, a linear
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structural model has been considered for the modal aeroelastic analysis built in the CFL3Dv6.0 code. First
four mode shapes of the wing described in the previous section have been used in the model analysis and
the transient response for each mode has been calculated as output. For the uncertainty analysis, we have
focused on the transient response of the first mode (bending) shape. For the structural modeling of the wing,
experimental model data from Yates18 has been used. The structural damping parameter has been set to
zero for all aeroelastic runs.

Figure 1. AGARD 445.6 Wing used in aeroe-
lastic calculations and the surface grid

To model the the time-dependent transonic aerodynamics
over the deforming wing, three-dimensional, unsteady Euler
Equations were solved with CFL3D on a computational grid
having a C-H topology with 193× 65× 42 grid points (Fig-
ure 1). The flux difference splitting method of Roe was em-
ployed in the calculation of the fluxes at the cell faces and
and the primitive variables on the cell faces were obtained us-
ing a third-order upwind-biased spatial differencing scheme
with the MinMod flux limiter. To march the solution in time,
a second-order backward time-differencing scheme with sub
iterations was implemented. A non-dimensional time step of
0.3 with 5 sub-iterations per time step was used in the calcu-
lations. At each time step, a multigrid method was employed
for convergence increase and error reduction.

C. Stochastic Problem

For the stochastic aeroelasticity problem, the free-stream
Mach number (M∞) and the angle of attack (α) are treated as uncertain variables. The Mach number
is modeled as a uniform random variable between M∞ = 0.8 and 1.1 (mean Mach number of 0.95 and
a coefficient of variation of 9.1%). The angle of attack is defined to have a uniform distribution between
α = −2.0 and 2.0 degrees (mean angle of 0.0 degrees and a standard deviation of 1.155). The Mach number
variation is chosen such that the uncertainty interval includes transonic regime ranging from high subsonic to
low supersonic Mach numbers. In the formulation of the stochastic problem the free-stream pressure and the
density were kept constant, so the uncertainty in the Mach number can be also interpreted as the uncertainty
due to the variation in the free-stream velocity or the dynamic pressure. Both parameters are chosen to study
the variation in aeroelastic characteristics due to the uncertainty in two common aerodynamic variables .
Future studies will involve random variables coming from both aerodynamics and structural dynamics to
extend the uncertainty quantification approach discussed in this paper to a representative multidisciplinary
problem.

Mode 1

(9.6 Hz)

Mode 2

(38.17 Hz)

Mode 3

(48.25 Hz)
Mode 4

(91.54 Hz)

Figure 2. The first four natural vibrational
mode shapes and frequencies for the AGARD
445.6 Wing

Since the dynamic aeroleasticity problems, which may
also include flutter are inherently unsteady, various output
quantities or the response of the system will be also time-
dependent. To quantify the uncertainty in the time depen-
dent output of the AGARD 445.6 wing in transonic flow, we
parameterize the transient response of a particular aeroleas-
tic mode with damped Sine waves (or complex exponential
functions) using the equation

x(t) = a0 + e−ηt [aCos(ωt) + bSin(ωt)] . (11)

In this equation, x(t) corresponds to a time-dependent re-
sponse variable such as the generalized displacement or the
force, which is obtained from a deterministic numerical aeroe-
lastic simulation described in the previous section. The LHS

of the equation includes the parameters a0 (the offset or the static value), η (the damping factor), a (the
coefficient of the Cosine term), b (the coefficient of the Sine term), and ω (the angular frequency), which
are determined with curve-fitting to the simulation data using the method described by Bennett and Des-
marais.23 All variables and coefficients in Equation 11 including time t are non-dimensional quantities
obtained with the scaling convention of CFL3Dv6.0 22 code. In the current work, the curve-fitting procedure
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Figure 3. The curve-fit to the generalized displacement response of the first mode shape (bending) for the
AGARD 445.6 wing at Mach = 0.977 and α = −0.709o with the parameters a0 = −0.02495, η = −0.006772,
a = 0.01698, b = 0.01232, and ω = 0.1021 (See Equation 11).

was implemented in Mathematica c© version 6 using the CFL3Dv6.0 aeroelastic output data. Figure 3 gives
an example result of the curve-fitting procedure, which shows the good representation of the transient re-
sponse of the first mode shape (bending) with the parameterized curve for Mach = 0.977 and α = −0.709o.
For this case, the damping factor η is obtained as -0.00677 which indicates that the wing experiences flutter
for the given Mach number and the angle of attack. In general, η > 0 will correspond to a stable (damped)
transient, η = 0 a neutral condition, and η < 0 a flutter solution. One can think of the curve-fitting proce-
dure as a time-independent parameterization of the transient aeroelastic response. This type of an approach
is particularly useful in the stochastic analysis of the time-dependent output with Polynomial Chaos, since
the accuracy of the approximation should not be affected from the growing non-linearity of the response in
time.

In the stochastic problem, the parameters that characterize the transient will be uncertain due the
variation in the free-stream Mach number and the angle of attack. Each parameter will posses a probability
distribution. In particular, we will focus on the quantification of uncertainty in the damping factor, since this
parameter is an indicator of flutter. Along with the mean and the standard deviation, we will also investigate
the flutter probability using the probability distribution of the damping factor. For the given uncertainty
in the Mach number and the angle of attack, the probability of flutter will be determined from the ratio of
samples (or area) with η < 0 to the total number of samples (area) in the damping factor distribution.

The propagation and the quantification of uncertainty in stochastic aeroelastic wing problem are studied
with two approaches: Latin Hypercube Monte Carlo with 1000 samples and Point-Collocation NIPC with
different polynomial degrees. Based on the observations from the stochastic model problems,2 Hammersley
Sampling with a number of collocation points that is twice more than the minimum number required (np = 2)
has been used for the selection of collocation points for the NIPC approach. Various statistics obtained with
the Point-Collocation NIPC are compared to the Latin Hypercube Monte Carlo results.

IV. Results

The initial stochastic results with the AGARD 445.6 wing were obtained with the rigid wing assumption
in transonic flow and the results were reported in a recent paper by Hosder et al.2 That work, which included
the same geometry and the same uniform uncertain input variables (Mach number and the angle of attack)
with the same limits can be considered as a preliminary investigation before the application of the Point-
Collocation NIPC method to the current stochastic computational aeroelasticity problem. In that study,
Hosder et al. quantified the uncertainty in various output quantities of interest such as the lift coefficient,
drag coefficient, and the surface pressure distributions. Figure 4 shows the uncertainty bars for the pressure
coefficient (Cp) distributions at three spanwise stations obtained using the Point-Collocation NIPC approach
for the rigid transonic wing case. The results showed that a 5th degree Point-Collocation NIPC expansion
obtained with Hammersley sampling was capable of estimating the statistics at an accuracy level of 1000
Latin Hypercube Monte Carlo simulations with a significantly lower computational cost. The following two
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Figure 4. The uncertainty bars for the pressure coefficient (Cp) distributions at three spanwise stations
obtained using the Point-Collocation NIPC approach in the rigid stochastic transonic AGARD 445.6 wing
study by Hosder et al.2 Each uncertainty bar includes the Cp values within 95% confidence interval.

sections include the results obtained for the current stochastic aeroelastic wing study using Latin Hypercube
Monte Carlo and Point-Collocation NIPC methods.

A. Latin Hypercube Monte Carlo Results

Latin Hypercube Monte-Carlo method has been used to calculate various statistics of the curve-fit parameters
that characterize the aeroelastic response of the first (bending) mode of the transonic wing. The transient
responses were calculated at 1000 Latin Hypercube sample points of Mach number and angle of attack
selected from associated uniform probability distributions. Figure 5 shows the scatter of the damping factor
η obtained with the Monte Carlo simulations and gives a qualitative description of the dependence of η on the
Mach number and the angle of attack within the given range of these random input parameters. As can be
seen from Figure 5(a), for all samples that have the Mach number between 0.8 and approximately 0.87, the
aeroelastic response is in the stable region (η < 0) regardless of the variation in the angle of attack. Starting
from Mach=0.8, the damping factor starts to decrease with the increase of the Mach number and this trend
continues until a Mach number of 0.96 is reached where the minimum value of η is approximately -0.008.
Beyond this point, an opposite trend for the damping factor can be observed: with the increase of the Mach
number, η value starts to increase, carrying the aeroelastic response towards the stable region. This scatter
plot shows that a significant portion of the responses (between Mach≈ 0.87 and Mach≈ 1.07) fall within the
flutter region with the given uncertainty in the Mach number and the angle of attack. At a constant Mach
number value, the scatter in the data is due to the uncertainty in the angle of attack and the width of this
scatter tends to decrease at supersonic Mach numbers with Mach> 1.05. Figure 5(b) shows that the scatter
in the damping factor is symmetric with respect to zero degrees angle of attack due to the the symmetry
of the AGARD 445.6 wing geometry. At a constant angle of attack, the scatter is due the uncertainty in
Mach number and the width of this scatter (variation) is much larger compared to the variation observed
at a constant Mach number, which implies that the uncertainty in Mach number has more influence on the
value of the damping factor compared to the effect of the angle of attack within the given input uncertainty
range.

Table 1 gives the Latin Hypercube Monte Carlo statistics for the damping factor η. From the probability
distribution of η, the flutter probability (PF ) has been calculated as 68.9%. This indicates that for the given
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Figure 5. Scatter plots of damping factor (η) obtained with Latin Hypercube Monte Carlo with 1000 samples.

uncertainty in the Mach number and the angle of attack, the chance of having flutter is much more likely
than having a stable aeroelastic response. Table 1 also gives the 95% confidence interval for each Monte
Carlo statistics, which was obtained with the Bootstrap Method. The advantage of the Bootstrap Method
is that it is not restricted to a specific distribution, e.g. a Gaussian. It is easy and efficient to implement,
and can be completely automated to any estimator, such as the mean or the variance. In practice, one takes
at least 100 bootstrap samples to obtain a standard error estimate. In our computations, we used 1000
bootstrap samples each consisting of 1000 observations selected randomly from the original Monte Carlo
simulations by giving equal probability (1/1000) to each observation.

Table 1. The Latin Hypercube Monte Carlo and Point-Collocation NIPC (p = 8) statistics for the damping
factor η. The 95% confidence intervals for the MC statistics were calculated using the Bootstrap method.

Statistics MC 95% Confidence Interval of MC Point-Collocation NIPC (p = 8)

Mean -0.00195823 [-0.00213605, -0.00178033] -0.00198330
Standard Deviation 0.0029924 [0.00290271, 0.00307085] 0.00295386
Flutter Probability 68.9% [66.1%, 71.8% ] 70.0%

B. Point-Collocation NIPC Results

The chaos expansions up to a polynomial degree of 8 were obtained to calculate various statistics of the
parameters used in the curve-fits representing the transient responses (generalized displacement) of the first
(bending) mode. The coefficients in the polynomial expansions were calculated with the Point-Collocation
NIPC method using Hammersley samples (with np = 2) as the collocation points. Table 2 gives the compu-
tational cost associated with the Latin Hypercube Monte Carlo and the Point-Collocation NIPC approach.
As can be seen from this table, computational time for the the Monte Carlo simulations is approximately 11
times more than the time required for the evaluation of Point-Collocation NIPC with a polynomial degree
of 8.

In the NIPC study, we have monitored the convergence of the mean and the standard deviation of the
damping factor (Figure 6) along with the convergence of the probability of flutter (Figure 7). As the degree
of the polynomial chaos increased, all statistics converged at a polynomial degree of 8. At this polynomial
degree, all statistics including the probability of flutter fall within the 95% confidence interval of the Latin
Hypercube Monte Carlo simulations. Table 1 gives the statistics obtained with the 8th degree polynomial
chaos expansion. The probability of flutter, which was calculated as 68.9% with the Latin Hypercube Monte
Carlo takes the value of 70% with the Point-Collocation NIPC method. Figure 8 gives the histograms of
the damping factor obtained with the Monte Carlo method and the 8th degree polynomial chaos expansion.
Except the peak region on the left hand side, polynomial chaos seems to capture the shape of the Monte
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Figure 6. Mean and standard deviation (StD) of damping factor η obtained with Point-Collocation NIPC and
Latin Hypercube MC

Carlo histogram. The shape of histograms also indicate the highly non-linear characteristics of the aeroelastic
system considered in this study. Although the input uncertainty is uniform, the output uncertainty exhibit
a highly non-conventional distribution, which also explain the relatively high polynomial degree required to
estimate the statistics with the NIPC approach.
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Figure 7. The probability of flutter PF obtained with
Point-Collocation NIPC and Latin Hypercube MC

Polynomial Chaos expansions can also be inter-
preted as stochastic response surfaces, which ap-
proximate the output quantities of interest at any
location or interval within the region defined by
the limits of the uncertain input variables. For the
damping factor η, we can write the polynomial chaos
expansion as ηPC = ηPC [ξ1(M∞), ξ2(α)] since the
standard uniform input variables ξ1 and ξ2 are func-
tions of the free-stream Mach number and the an-
gle of attack, respectively. Once the polynomial co-
efficients are calculated with the Point-Collocation
NIPC, the polynomial representation of η can be
used to approximate the response value at any point
within the support region of the uncertain variables.
As an example, Figure 9(a) shows the 8th degree
polynomial chaos representation of the damping fac-
tor (ηPC = ηPC [ξ1(M∞), ξ2(αi)], i = 1, 2, 3) as a

function of Mach number at three angle of attack values (α1 = 0.0o, α2 = 0.75o, and α3 = 1.5o) in the
interval 0.85 <Mach< 1.05, whereas Figure 9(b) shows the polynomial chaos representation of the damp-
ing factor (ηPC = ηPC [ξ1(M∞i), ξ2(α)], i = 1, 2, 3) as a function of angle of attack at three Mach values
(M∞1 = 0.85, M∞2 = 0.95, and M∞3 = 1.05) in the interval −1.5o < α < 1.5o. As can be seen from

Table 2. The computational cost for evaluation of the Latin Hypercube Monte Carlo simulations and the
Point-Collocation NIPC for the stochastic aeroelasticity problem. The CFD runs were performed on a SGI
Origin 3800 with 64 processors. (p is the degree of the polynomial chaos expansion).

NIPC
Monte Carlo p = 2 p = 4 p = 6 p = 8

number of CFD runs 1000 12 30 56 90
wall clock time (hours) 446.7 5.36 13.4 25 40.2
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on the Latin Hypercube MC responses

both figures, the polynomial chaos representation of the damping factor follows a trend consistent with the
observations made for the Monte Carlo responses. In Figure 9(a), it can also be seen that increasing the
angle of attack tends to move the flutter boundary (η = 0) towards lower Mach numbers in the subsonic
region. By using the polynomial expansion, the flutter boundary can be determined to be at Mach=0.894
for α = 0.0o, at a Mach number of 0.885 for α = 0.75o and at Mach=0.874 for α = 1.5o.

Using the polynomial chaos expansions, one can also calculate the sensitivity of the damping factor to
free-stream Mach number and angle of attack with

∂ηPC

∂M∞
=

∂ηPC

∂ξ1

∂ξ1

∂M∞
, (12)

∂ηPC

∂α
=

∂ηPC

∂ξ2

∂ξ2

∂α
. (13)

Figure 10(a) shows the sensitivity of the damping factor to the free-stream Mach number at three angles of
attack and Figure 10(b) gives the sensitivity of the damping factor to the angle of attack at three free-stream
Mach numbers. The sensitivity information can be calculated at any point within the region defined by the
uncertain input variables. As an example, for the flutter boundary obtained at Mach=0.894 and α = 0.0o,
the sensitivity derivatives were calculated as ∂ηPC/∂M∞ = −0.09636 and ∂ηPC/∂α = 0.00011[deg−1], which
shows that the damping factor is much more sensitive to small variations in Mach number than the small
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Figure 10. Sensitivity of the damping factor η to Mach number and angle of attack obtained with Point-
Collocation NIPC (p = 8).

changes in the angle of attack . A positive change in Mach number at this point will onset flutter, which can
also be seen from Figure 9(a). In fact, at most regions, the damping factor is more sensitive to the change
in Mach number except the locations where ∂ηPC/∂M∞ ≈ 0 such as at Mach ≈ 0.96.

The polynomial chaos expansions of the parameters (a0, η, a, b, and ω) used in the curve-fit to the
aeroelastic response (generalized displacement) enable the reconstruction of the time dependent transient
for any Mach number and angle of attack within the defined input uncertainty region. To demonstrate this,
three random points from the Latin Hypercube Monte Carlo simulations have been selected, which exhibit
responses that fall in the flutter region, at the flutter boundary, and in the stable region as seen in Figure 11.
The good agreement between the reconstructed transients and the original Monte Carlo responses shows the
effectiveness of the time-independent parameterization of the transients and the Point-Collocation NIPC for
uncertainty propagation and quantification in stochastic aeroelastic problems.

V. Conclusions

In this paper, we have demonstrated the application of a Point-Collocation Non-Intrusive Polynomial
Chaos method to a stochastic transonic aeroelastic wing problem with two uncertain variables. This stochas-
tic computational aeroelasticity problem involved the AGARD 445.6 wing in transonic flow with an uncertain
free-stream Mach number and angle of attack, both modeled as uniform random variables. The transient
response of the first aeroelastic (bending) mode has been analyzed for uncertainty quantification. A curve-
fitting procedure was used to obtain time-independent parameterization of the transient aeroelastic responses.
This approach enabled the study of the uncertainty in the aeroelastic response in terms of the variation in
the curve-fit parameters that characterize the time-dependent transients. In particular, we have focused on
the quantification of uncertainty in the damping factor, since this parameter is an indicator of flutter. Along
with the mean and the standard deviation of the damping factor, flutter probability has been also calculated
for the specified uncertainty range in the Mach number and the angle of attack. The Point-Collocation
NIPC method has been used to quantify the uncertainty in the damping factor. Hammersley Sampling with
a number of collocation points that is twice more than the minimum number required (np = 2) has been
used for the selection of collocation points in the NIPC approach. The propagation and the quantification
of uncertainty in stochastic aeroelastic wing problem was also studied with 1000 Latin Hypercube Monte
Carlo simulations.

The results obtained for various statistics of the damping factor including the flutter probability showed
that an 8th degree Point-Collocation NIPC expansion is capable of estimating the statistics at an accuracy
level of 1000 Latin Hypercube Monte Carlo simulations. Due to the highly non-linear nature of the transonic
aeroelasticity problem, a relatively high polynomial degree was required for the convergence and the accuracy
of the statistics obtained with the Point-Collocation NIPC method. However, the computational cost required
for the evaluation of NIPC method was still significantly lower than the computational expense of the
Monte Carlo simulations. In addition to the uncertainty quantification, the response surface approximation,
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sensitivity analysis, and reconstruction of the transient response via NIPC were also demonstrated for the
transonic stochastic aeroelastic wing problem. Overall, the results show that the Point-Collocation NIPC
is a promising method for efficient uncertainty propagation and quantification in stochastic aeroleasticity
problems.
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Figure 11. Reconstruction of time dependent aeroelas-
tic responses with Point-Collocation NIPC method
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