37 research outputs found

    Marine Corrosion Protective Coatings of Hexagonal Boron Nitride Thin Films on Stainless Steel

    No full text
    Recently, two-dimensional, layered materials such as graphene and hexagonal boron nitride (h-BN) have been identified as interesting materials for a range of applications. Here, we demonstrate the corrosion prevention applications of h-BN in marine coatings. The performance of h-BN/polymer hybrid coatings, applied on stainless steel, were evaluated using electrochemical techniques in simulated seawater media [marine media]. h-BN/polymer coating shows an efficient corrosion protection with a low corrosion current density of 5.14 × 10<sup>–8</sup> A/cm<sup>2</sup> and corrosion rate of 1.19 × 10<sup>–3</sup> mm/year and it is attributed to the hydrofobic, inert and dielectric nature of boron nitride. The results indicated that the stainless steel with coatings exhibited improved corrosion resistance. Electrochemical impedance spectroscopy and potentiodynamic analysis were used to propose a mechanism for the increased corrosion resistance of h-BN coatings

    Bottom-up Approach toward Single-Crystalline VO<sub>2</sub>‑Graphene Ribbons as Cathodes for Ultrafast Lithium Storage

    No full text
    Although lithium ion batteries have gained commercial success owing to their high energy density, they lack suitable electrodes capable of rapid charging and discharging to enable a high power density critical for broad applications. Here, we demonstrate a simple bottom-up approach toward single crystalline vanadium oxide (VO<sub>2</sub>) ribbons with graphene layers. The unique structure of VO<sub>2</sub>-graphene ribbons thus provides the right combination of electrode properties and could enable the design of high-power lithium ion batteries. As a consequence, a high reversible capacity and ultrafast charging and discharging capability is achieved with these ribbons as cathodes for lithium storage. A full charge or discharge is capable in 20 s. More remarkably, the resulting electrodes retain more than 90% of the initial capacity after cycling more than 1000 times at an ultrahigh rate of 190C, providing the best reported rate performance for cathodes in lithium ion batteries to date

    Functionalized Multilayered Graphene Platform for Urea Sensor

    No full text
    Multilayered graphene (MLG) is an interesting material for electrochemical sensing and biosensing because of its very large 2D electrical conductivity and large surface area. We propose a less toxic, reproducible, and easy method for producing functionalized multilayer graphene from multiwalled carbon nanotubes (MWCNTs) in mass scale using only concentrated H<sub>2</sub>SO<sub>4</sub>/HNO<sub>3</sub>. Electron microscopy results show the MLG formation, whereas FTIR and XPS data suggest its carboxylic and hydroxyl-functionalized nature. We utilize this functionalized MLG for the fabrication of a novel amperometric urea biosensor. This biosensor shows linearity of 10–100 mg dL<sup>–1</sup>, sensitivity of 5.43 μA mg<sup>–1</sup> dL cm<sup>–2</sup>, lower detection limit of 3.9 mg dL<sup>–1</sup>, and response time of 10 s. Our results suggest that MLG is a promising material for electrochemical biosensing applications

    Synthesis and Photoresponse of Large GaSe Atomic Layers

    No full text
    We report the direct growth of large, atomically thin GaSe single crystals on insulating substrates by vapor phase mass transport. A correlation is identified between the number of layers and a Raman shift and intensity change. We found obvious contrast of the resistance of the material in the dark and when illuminated with visible light. In the photoconductivity measurement we observed a low dark current. The on–off ratio measured with a 405 nm at 0.5 mW/mm<sup>2</sup> light source is in the order of 10<sup>3</sup>; the photoresponsivity is 17 mA/W, and the quantum efficiency is 5.2%, suggesting possibility for photodetector and sensor applications. The photocurrent spectrum of few-layer GaSe shows an intense blue shift of the excitation edge and expanded band gap compared with bulk material

    Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction

    No full text
    The nitrogen-doped graphene (NG) with dominance of the pyridinic-N configuration is synthesized via a straightforward process including chemical vapor deposition (CVD) growth of graphene and postdoping with a solid nitrogen precursor of graphitic C<sub>3</sub>N<sub>4</sub> at elevated temperature. The NG fabricated from CVD-grown graphene contains a high N content up to 6.5 at. % when postdoped at 800 °C but maintains high crystalline quality of graphene. The obtained NG exhibits high activity, long-standing stability, and outstanding crossover resistance for electrocatalysis of oxygen reduction reaction (ORR) in alkaline medium. The NG treated at 800 °C shows the best ORR performance. Further study of the dependence of ORR activity on different N functional groups in these metal-free NG electrodes provides deeper insights into the origin of ORR activity. Our results reveal that the pyridinic-N tends to be the most active N functional group to facilitate ORR at low overpotential via a four-electron pathway

    Bottom-up Approach toward Single-Crystalline VO<sub>2</sub>‑Graphene Ribbons as Cathodes for Ultrafast Lithium Storage

    No full text
    Although lithium ion batteries have gained commercial success owing to their high energy density, they lack suitable electrodes capable of rapid charging and discharging to enable a high power density critical for broad applications. Here, we demonstrate a simple bottom-up approach toward single crystalline vanadium oxide (VO<sub>2</sub>) ribbons with graphene layers. The unique structure of VO<sub>2</sub>-graphene ribbons thus provides the right combination of electrode properties and could enable the design of high-power lithium ion batteries. As a consequence, a high reversible capacity and ultrafast charging and discharging capability is achieved with these ribbons as cathodes for lithium storage. A full charge or discharge is capable in 20 s. More remarkably, the resulting electrodes retain more than 90% of the initial capacity after cycling more than 1000 times at an ultrahigh rate of 190C, providing the best reported rate performance for cathodes in lithium ion batteries to date

    Anisotropically Functionalized Carbon Nanotube Array Based Hygroscopic Scaffolds

    No full text
    Creating ordered microstructures with hydrophobic and hydrophilic moieties that enable the collection and storage of small water droplets from the atmosphere, mimicking structures that exist in insects, such as the Stenocara beetle, which live in environments with limited amounts of water. Inspired by this approach, vertically aligned multiwalled carbon nanotube forests (NTFs) are asymmetrically end-functionalized to create hygroscopic scaffolds for water harvesting and storage from atmospheric air. One side of the NTF is made hydrophilic, which captures water from the atmosphere, and the other side is made superhydrophobic, which prevents water from escaping and the forest from collapsing. To understand how water penetrates into the NTF, the fundamentals of water/NTF surface interaction are discussed

    Strain Rate Dependent Shear Plasticity in Graphite Oxide

    No full text
    Graphene oxide film is made of stacked graphene layers with chemical functionalities, and we report that plasticity in the film can be engineered by strain rate tuning. The deformation behavior and plasticity of such functionalized layered systems is dominated by shear slip between individual layers and interaction between functional groups. Stress–strain behavior and theoretical models suggest that the deformation is strongly strain rate dependent and undergoes brittle to ductile transition with decreasing strain rate

    Defects Engineered Monolayer MoS<sub>2</sub> for Improved Hydrogen Evolution Reaction

    No full text
    MoS<sub>2</sub> is a promising and low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the amount of active sites, for example, edges, in MoS<sub>2</sub>. Here, we demonstrate that oxygen plasma exposure and hydrogen treatment on pristine monolayer MoS<sub>2</sub> could introduce more active sites via the formation of defects within the monolayer, leading to a high density of exposed edges and a significant improvement of the hydrogen evolution activity. These as-fabricated defects are characterized at the scale from macroscopic continuum to discrete atoms. Our work represents a facile method to increase the hydrogen production in electrochemical reaction of MoS<sub>2</sub> via defect engineering, and helps to understand the catalytic properties of MoS<sub>2</sub>

    Ballistic Fracturing of Carbon Nanotubes

    No full text
    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome
    corecore