284 research outputs found

    Cartilage Regeneration on a Large Articular Surface Facilitated by Stress Shielding

    Get PDF
    An animal model for the study of articular cartilage regeneration in-vivo facilitated by stress-shielding is introduced. The object of the model is to test the hypothesis that some form of cartilaginous tissue will grow upon a large joint surface in vivo with the joint in normal motion. The model utilizes the known capability of immature cells to differentiate. The source of cells is bleeding subchondral bone. In addition, the model provides a mechanically shielded environment in which cell differentiation and maturation can occur. The study showed that a substantial amount of tissue will grow in the animal model only when the new tissue is relieved of the normal joint stresses. The characteristics of the new tissue were observed after 12 weeks of growth. Gross observation showed that the new tissue grew to completely surround the shielding devices and covered the entire articular surface. The new tissue grew to the height of the shielded area (2 to 3mm.). Histologic evidence indicated the new growth was largely fibrous in nature but with some areas of newly differentiated chondrocytes. Biomechanical analyses quantified the tissue as being a soft, permeable neocartilage: biochemical evaluations dem­onstrated increased hydration with small amounts of proteoglycans. These characteristics are inferior to normal cartilage. Never the less, the tissue quality is as good or better than that obtained in other models and it grew to cover a significantly larger articulating surface than all other experimental models. Material obtained in this experiment provides a baseline of data for future experiments designed to manipulate the new tissue using tissue engi­neering methods and to learn how the new tissue will tolerate exposure to reintroduced normal stress

    Does gender matter? A cross-national investigation of primary class-room discipline.

    Get PDF
    © 2018 Informa UK Limited, trading as Taylor & Francis GroupFewer than 15% of primary school teachers in both Germany and the UK are male. With the on-going international debate about educational performance highlighting the widening gender achievement gap between girl and boy pupils, the demand for more male teachers has become prevalent in educational discourse. Concerns have frequently been raised about the underachievement of boys, with claims that the lack of male ‘role models’ in schools has an adverse effect on boys’ academic motivation and engagement. Although previous research has examined ‘teaching’ as institutional talk, men’s linguistic behaviour in the classroom remains largely ignored, especially in regard to enacting discipline. Using empirical spoken data collected from four primary school classrooms in both the UK and in Germany, this paper examines the linguistic discipline strategies of eight male and eight female teachers using Interactional Sociolinguistics to address the question, does teacher gender matter?Peer reviewedFinal Accepted Versio

    Mechanistic Inquiry into the Role of Tissue Remodeling in Fibrotic Lesions in Human Atrial Fibrillation

    Get PDF
    AbstractAtrial fibrillation (AF), the most common arrhythmia in humans, is initiated when triggered activity from the pulmonary veins propagates into atrial tissue and degrades into reentrant activity. Although experimental and clinical findings show a correlation between atrial fibrosis and AF, the causal relationship between the two remains elusive. This study used an array of 3D computational models with different representations of fibrosis based on a patient-specific atrial geometry with accurate fibrotic distribution to determine the mechanisms by which fibrosis underlies the degradation of a pulmonary vein ectopic beat into AF. Fibrotic lesions in models were represented with combinations of: gap junction remodeling; collagen deposition; and myofibroblast proliferation with electrotonic or paracrine effects on neighboring myocytes. The study found that the occurrence of gap junction remodeling and the subsequent conduction slowing in the fibrotic lesions was a necessary but not sufficient condition for AF development, whereas myofibroblast proliferation and the subsequent electrophysiological effect on neighboring myocytes within the fibrotic lesions was the sufficient condition necessary for reentry formation. Collagen did not alter the arrhythmogenic outcome resulting from the other fibrosis components. Reentrant circuits formed throughout the noncontiguous fibrotic lesions, without anchoring to a specific fibrotic lesion

    KEAP1 Is Required for Artesunate Anticancer Activity in Non-Small-Cell Lung Cancer

    Get PDF
    Artesunate is the most common treatment for malaria throughout the world. Artesunate has anticancer activity likely through the induction of reactive oxygen species, the same mechanism of action utilized in Plasmodium falciparum infections. Components of the kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which regulates cellular response to oxidative stress, are mutated in approximately 30% of non-small-cell lung cancers (NSCLC); therefore, we tested the hypothesis that KEAP1 is required for artesunate sensitivity in NSCLC. Dose response assays identified A549 cells, which have a G333C-inactivating mutation in KEAP1, as resistant to artesunate, with an IC50 of 23.6 µM, while H1299 and H1563 cells were sensitive to artesunate, with a 10-fold lower IC50. Knockdown of KEAP1 through siRNA caused increased resistance to artesunate in H1299 cells. Alternatively, the pharmacological inhibition of NRF2, which is activated downstream of KEAP1 loss, by ML385 partially restored sensitivity of A549 cells to artesunate, and the combination of artesunate and ML385 was synergistic in both A549 and H1299 cells. These findings demonstrate that KEAP1 is required for the anticancer activity of artesunate and support the further development of NRF2 inhibitors to target patients with mutations in the KEAP1/NRF2 pathway

    The Effect of Growth Environment and Salinity on Lipid Production and Composition of Salicornia virginica

    Get PDF
    Finding a viable and sustainable source of renewable energy is a global task. Biofuels as a renewable energy source can potentially be a viable option for sustaining long-term energy needs. Biodiesel from halophytes shows great promise due to their ability to serve not only as a fuel source, but a food source as well. Halophytes are one of the few biomass plant species that can tolerate a wide range of saline conditions. We investigate the feasibility of using the halophyte, Salicornia virginica as a biofuel source by conducting a series of experiments utilizing various growth and salinity conditions. The goal is to determine if the saline content of Salicornia virginica in our indoor growth vs outdoor growth conditions has an influence on lipid recovery and total biomass composition. We focused on using standard lipid extraction protocols and characterization methods to evaluate twelve Salicornia virginica samples under six saline values ranging from freshwater to seawater and two growth conditions. The overall goal is to develop an optimal lipid extraction protocol for Salicornia virginica and potentially apply this protocol to halophytes in general

    Preclinical Evaluation of Artesunate as an Antineoplastic Agent in Ovarian Cancer Treatment

    Get PDF
    BACKGROUND: Ovarian cancer is the deadliest gynecologic malignancy despite current first-line treatment with a platinum and taxane doublet. Artesunate has broad antineoplastic properties but has not been investigated in combination with carboplatin and paclitaxel for ovarian cancer treatment. METHODS: Standard cell culture technique with commercially available ovarian cancer cell lines were utilized in cell viability, DNA damage, and cell cycle progression assays to qualify and quantify artesunate treatment effects. Additionally, the sequence of administering artesunate in combination with paclitaxel and carboplatin was determined. The activity of artesunate was also assessed in 3D organoid models of primary ovarian cancer and RNAseq analysis was utilized to identify genes and the associated genetic pathways that were differentially regulated in artesunate resistant organoid models compared to organoids that were sensitive to artesunate. RESULTS: Artesunate treatment reduces cell viability in 2D and 3D ovarian cancer cell models. Clinically relevant concentrations of artesunate induce G1 arrest, but do not induce DNA damage. Pathways related to cell cycle progression, specifically G1/S transition, are upregulated in ovarian organoid models that are innately more resistant to artesunate compared to more sensitive models. Depending on the sequence of administration, the addition of artesunate to carboplatin and paclitaxel improves their effectiveness. CONCLUSIONS: Artesunate has preclinical activity in ovarian cancer that merits further investigation to treat ovarian cancer

    Voreloxin Is an Anticancer Quinolone Derivative that Intercalates DNA and Poisons Topoisomerase II

    Get PDF
    Topoisomerase II is critical for DNA replication, transcription and chromosome segregation and is a well validated target of anti-neoplastic drugs including the anthracyclines and epipodophyllotoxins. However, these drugs are limited by common tumor resistance mechanisms and side-effect profiles. Novel topoisomerase II-targeting agents may benefit patients who prove resistant to currently available topoisomerase II-targeting drugs or encounter unacceptable toxicities. Voreloxin is an anticancer quinolone derivative, a chemical scaffold not used previously for cancer treatment. Voreloxin is completing Phase 2 clinical trials in acute myeloid leukemia and platinum-resistant ovarian cancer. This study defined voreloxin's anticancer mechanism of action as a critical component of rational clinical development informed by translational research.Biochemical and cell-based studies established that voreloxin intercalates DNA and poisons topoisomerase II, causing DNA double-strand breaks, G2 arrest, and apoptosis. Voreloxin is differentiated both structurally and mechanistically from other topoisomerase II poisons currently in use as chemotherapeutics. In cell-based studies, voreloxin poisoned topoisomerase II and caused dose-dependent, site-selective DNA fragmentation analogous to that of quinolone antibacterials in prokaryotes; in contrast etoposide, the nonintercalating epipodophyllotoxin topoisomerase II poison, caused extensive DNA fragmentation. Etoposide's activity was highly dependent on topoisomerase II while voreloxin and the intercalating anthracycline topoisomerase II poison, doxorubicin, had comparable dependence on this enzyme for inducing G2 arrest. Mechanistic interrogation with voreloxin analogs revealed that intercalation is required for voreloxin's activity; a nonintercalating analog did not inhibit proliferation or induce G2 arrest, while an analog with enhanced intercalation was 9.5-fold more potent.As a first-in-class anticancer quinolone derivative, voreloxin is a toposiomerase II-targeting agent with a unique mechanistic signature. A detailed understanding of voreloxin's molecular mechanism, in combination with its evolving clinical profile, may advance our understanding of structure-activity relationships to develop safer and more effective topoisomerase II-targeted therapies for the treatment of cancer

    Treatment of hyperphosphatemia in hemodialysis patients: The Calcium Acetate Renagel Evaluation (CARE Study)

    Get PDF
    Treatment of hyperphosphatemia in hemodialysis patients: The Calcium Acetate Renagel Evaluation (CARE Study).BackgroundHyperphosphatemia underlies development of hyperparathyroidism, osteodystrophy, extraosseous calcification, and is associated with increased mortality in hemodialysis patients.MethodsTo determine whether calcium acetate or sevelamer hydrochloride best achieves recently recommended treatment goals of phosphorus ≤5.5mg/dL and Ca × P product ≤55mg2/dL2, we conducted an 8-week randomized, double-blind study in 100 hemodialysis patients.ResultsComparisons of time-averaged concentrations (weeks 1 to 8) demonstrated that calcium acetate recipients had lower serum phosphorus (1.08mg/dL difference, P = 0.0006), higher serum calcium (0.63mg/dL difference, P < 0.0001), and lower Ca × P (6.1mg2/dL2 difference, P = 0.022) than sevelamer recipients. At each week, calcium acetate recipients were 20% to 24% more likely to attain goal phosphorus [odds ratio (OR) 2.37, 95% CI 1.28–4.37, P = 0.0058], and 15% to 20% more likely to attain goal Ca × P (OR 2.16, 95% CI 1.20–3.86, P = 0.0097). Transient hypercalcemia occurred in 8 of 48 (16.7%) calcium acetate recipients, all of whom received concomitant intravenous vitamin D. By regression analysis hypercalcemia was more likely with calcium acetate (OR 6.1, 95% CI 2.8–13.3, P < 0.0001). Week 8 intact PTH levels were not significantly different. Serum bicarbonate levels were significantly lower with sevelamer hydrochloride treatment (P < 0.0001).ConclusionCalcium acetate controls serum phosphorus and calcium-phosphate product more effectively than sevelamer hydrochloride. Cost-benefit analysis indicates that in the absence of hypercalcemia, calcium acetate should remain the treatment of choice for hyperphosphatemia in hemodialysis patients

    Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation

    Get PDF
    The energy-conversion efficiency is a key metric that facilitates comparison of the performance of various approaches to solar energy conversion. However, a suite of disparate methodologies has been proposed and used historically to evaluate the efficiency of systems that produce fuels, either directly or indirectly, with sunlight and/or electrical power as the system inputs. A general expression for the system efficiency is given as the ratio of the total output power (electrical plus chemical) divided by the total input power (electrical plus solar). The solar-to-hydrogen (STH) efficiency follows from this globally applicable system efficiency but only is applicable in the special case for systems in which the only input power is sunlight and the only output power is in the form of hydrogen fuel derived from solar-driven water splitting. Herein, system-level efficiencies, beyond the STH efficiency, as well as component-level figures of merit are defined and discussed to describe the relative energy-conversion performance of key photoactive components of complete systems. These figures of merit facilitate the comparison of electrode materials and interfaces without conflating their fundamental properties with the engineering of the cell setup. The resulting information about the components can then be used in conjunction with a graphical circuit analysis formalism to obtain “optimal” system efficiencies that can be compared between various approaches. The approach provides a consistent method for comparison of the performance at the system and component levels of various technologies that produce fuels and/or electricity from sunlight

    Substitution in a sense

    Get PDF
    The Reference Principle (RP) states that co-referring expressions are everywhere intersubstitutable salva congruitate. On first glance, (RP) looks like a truism, but a truism with some bite: (RP) transforms difficult philosophical questions about co-reference into easy grammatical questions about substitutability. This has led a number of philosophers to think that we can use (RP) to make short work of certain longstanding metaphysical debates. For example, it has been suggested that all we need to do to show that the predicate ‘( ) is a horse’ does not refer to a property is point out that ‘( ) is a horse’ and ‘the property of being a horse’ are not everywhere intersubstitutable salva congruitate. However, when we understand ‘substitution’ in the simplest and most straightforward way, (RP) is no truism; in fact, natural languages are full of counterexamples to the principle. In this paper, I introduce a new notion of substitution, and then develop and argue for a version of (RP) that is immune to these counterexamples. Along the way I touch on the following topics: the relation between argument forms and their natural language instances; the reification of sense; the difference between terms and predicates; and the relation between reference and disquotation. I end by arguing that my new version of (RP) cannot be used to settle metaphysical debates quite as easily as some philosophers would like
    corecore