27 research outputs found

    Simulation of Light Propagation in Skin and Subcutaneous Blood Vessels

    Get PDF
    The VeinViewer, produced by the Luminetx Corporation, projects an image of subcutaneous veins onto the surface of the skin by using the discovery that near infrared (NIR) light passes through and transmits back out of the skin issue except at the blood vessels as a result of the presence of hemoglobin1. We aim to improve the function of the VeinViewer by using computational models to interpret changes in properties of the subject,such as skin pigmentation, and settings on the device, such as light frequency. We also look to decrease error, as a result of the geometry of veins and the multiple layers of skin. A finite element model implementation the diffusion approximation of the radiation transfer equation fulfill the role in part, but questions of boundary conditions and the description of the source need clarification

    Superconductivity in metallic twisted bilayer graphene stabilized by WSeâ‚‚

    Get PDF
    Magic-angle twisted bilayer graphene (TBG), with rotational misalignment close to 1.1 degrees, features isolated flat electronic bands that host a rich phase diagram of correlated insulating, superconducting, ferromagnetic and topological phases. Correlated insulators and superconductivity have been previously observed only for angles within 0.1 degree of the magic angle and occur in adjacent or overlapping electron-density ranges; nevertheless, the origins of these states and the relation between them remain unclear, owing to their sensitivity to microscopic details. Beyond twist angle and strain, the dependence of the TBG phase diagram on the alignment and thickness of the insulating hexagonal boron nitride (hBN) used to encapsulate the graphene sheets indicates the importance of the microscopic dielectric environment. Here we show that adding an insulating tungsten diselenide (WSe₂) monolayer between the hBN and the TBG stabilizes superconductivity at twist angles much smaller than the magic angle. For the smallest twist angle of 0.79 degrees, superconductivity is still observed despite the TBG exhibiting metallic behaviour across the whole range of electron densities. Finite-magnetic-field measurements further reveal weak antilocalization signatures as well as breaking of fourfold spin–valley symmetry, consistent with spin–orbit coupling induced in the TBG via its proximity to WSe₂. Our results constrain theoretical explanations for the emergence of superconductivity in TBG and open up avenues towards engineering quantum phases in moiré systems

    Correlation-driven topological phases in magic-angle twisted bilayer graphene

    Get PDF
    Magic-angle twisted bilayer graphene (MATBG) exhibits a range of correlated phenomena that originate from strong electron–electron interactions. These interactions make the Fermi surface highly susceptible to reconstruction when ±1, ±2 and ±3 electrons occupy each moiré unit cell, and lead to the formation of various correlated phases. Although some phases have been shown to have a non-zero Chern number, the local microscopic properties and topological character of many other phases have not yet been determined. Here we introduce a set of techniques that use scanning tunnelling microscopy to map the topological phases that emerge in MATBG in a finite magnetic field. By following the evolution of the local density of states at the Fermi level with electrostatic doping and magnetic field, we create a local Landau fan diagram that enables us to assign Chern numbers directly to all observed phases. We uncover the existence of six topological phases that arise from integer fillings in finite fields and that originate from a cascade of symmetry-breaking transitions driven by correlations. These topological phases can form only for a small range of twist angles around the magic angle, which further differentiates them from the Landau levels observed near charge neutrality. Moreover, we observe that even the charge-neutrality Landau spectrum taken at low fields is considerably modified by interactions, exhibits prominent electron–hole asymmetry, and features an unexpectedly large splitting between zero Landau levels (about 3 to 5 millielectronvolts). Our results show how strong electronic interactions affect the MATBG band structure and lead to correlation-enabled topological phases

    Correlation-driven topological phases in magic-angle twisted bilayer graphene

    Get PDF
    Magic-angle twisted bilayer graphene (MATBG) exhibits a range of correlated phenomena that originate from strong electron–electron interactions. These interactions make the Fermi surface highly susceptible to reconstruction when ±1, ±2 and ±3 electrons occupy each moiré unit cell, and lead to the formation of various correlated phases. Although some phases have been shown to have a non-zero Chern number, the local microscopic properties and topological character of many other phases have not yet been determined. Here we introduce a set of techniques that use scanning tunnelling microscopy to map the topological phases that emerge in MATBG in a finite magnetic field. By following the evolution of the local density of states at the Fermi level with electrostatic doping and magnetic field, we create a local Landau fan diagram that enables us to assign Chern numbers directly to all observed phases. We uncover the existence of six topological phases that arise from integer fillings in finite fields and that originate from a cascade of symmetry-breaking transitions driven by correlations. These topological phases can form only for a small range of twist angles around the magic angle, which further differentiates them from the Landau levels observed near charge neutrality. Moreover, we observe that even the charge-neutrality Landau spectrum taken at low fields is considerably modified by interactions, exhibits prominent electron–hole asymmetry, and features an unexpectedly large splitting between zero Landau levels (about 3 to 5 millielectronvolts). Our results show how strong electronic interactions affect the MATBG band structure and lead to correlation-enabled topological phases

    Promotion of superconductivity in magic-angle graphene multilayers

    Get PDF
    Graphene bilayers and trilayers consisting of monolayers twisted at just the right angle have been shown to be superconducting. To acquire a unified understanding of superconductivity in these moiré superlattices, it is desirable to increase the number of known graphene moiré superconductors. Zhang et al. fabricated samples consisting of three, four, and five graphene layers that were twisted with respect to each other in an alternating sequence. These graphene multilayers were coupled to an underlying monolayer of tungsten diselenide. The researchers observed robust superconductivity in all three types of samples, with the superconducting portion of the phase diagram becoming more prominent as the number of layers increased

    Superconductivity in metallic twisted bilayer graphene stabilized by WSeâ‚‚

    Get PDF
    Magic-angle twisted bilayer graphene (TBG), with rotational misalignment close to 1.1 degrees, features isolated flat electronic bands that host a rich phase diagram of correlated insulating, superconducting, ferromagnetic and topological phases. Correlated insulators and superconductivity have been previously observed only for angles within 0.1 degree of the magic angle and occur in adjacent or overlapping electron-density ranges; nevertheless, the origins of these states and the relation between them remain unclear, owing to their sensitivity to microscopic details. Beyond twist angle and strain, the dependence of the TBG phase diagram on the alignment and thickness of the insulating hexagonal boron nitride (hBN) used to encapsulate the graphene sheets indicates the importance of the microscopic dielectric environment. Here we show that adding an insulating tungsten diselenide (WSe₂) monolayer between the hBN and the TBG stabilizes superconductivity at twist angles much smaller than the magic angle. For the smallest twist angle of 0.79 degrees, superconductivity is still observed despite the TBG exhibiting metallic behaviour across the whole range of electron densities. Finite-magnetic-field measurements further reveal weak antilocalization signatures as well as breaking of fourfold spin–valley symmetry, consistent with spin–orbit coupling induced in the TBG via its proximity to WSe₂. Our results constrain theoretical explanations for the emergence of superconductivity in TBG and open up avenues towards engineering quantum phases in moiré systems
    corecore