62 research outputs found

    NKX2-1 mutation in a family diagnosed with ataxic dyskinetic cerebral palsy

    Get PDF
    Benign hereditary chorea caused by mutations in the NK2 homeobox 1 gene (NKX2-1), shares clinical features with ataxic and dyskinetic cerebral palsy (CP), resulting in the possibility of misdiagnosis. A father and his two children were considered to have ataxic CP until a possible diagnosis of benign familial chorea was made in the children in early teenage. The father's neurological condition had not been appreciated prior to examination of the affected son. Whole exome sequencing of blood derived DNA and bioinformatics analysis were performed. A 7 bp deletion in exon 1 of NKX2-1, resulting in a frame shift and creation of a premature termination codon, was identified in all affected individuals. Screening of 60 unrelated individuals with a diagnosis of dyskinetic or ataxic CP did not identify NKX2-1 mutations. BHC can be confused with ataxic and dyskinetic CP. Occasionally these children have a mutation in NKX2-1.Gai McMichael, Eric Haan, Alison Gardner, Tzu Ying Yap, Suzanna Thompson, Robert Ouvrier, Russell C. Dale, Jozef Gecz, Alastair H. MacLenna

    Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2.

    Get PDF
    Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms

    Phenotypic insights into ADCY5-associated disease

    Get PDF
    Background Adenylyl cyclase 5 (ADCY5) mutations is associated with heterogenous syndromes: familial dyskinesia and facial myokymia; paroxysmal chorea and dystonia; autosomal‐dominant chorea and dystonia; and benign hereditary chorea. We provide detailed clinical data on 7 patients from six new kindreds with mutations in the ADCY5 gene, in order to expand and define the phenotypic spectrum of ADCY5 mutations. Methods In 5 of the 7 patients, followed over a period of 9 to 32 years, ADCY5 was sequenced by Sanger sequencing. The other 2 unrelated patients participated in studies for undiagnosed pediatric hyperkinetic movement disorders and underwent whole‐exome sequencing. Results Five patients had the previously reported p.R418W ADCY5 mutation; we also identified two novel mutations at p.R418G and p.R418Q. All patients presented with motor milestone delay, infantile‐onset action‐induced generalized choreoathetosis, dystonia, or myoclonus, with episodic exacerbations during drowsiness being a characteristic feature. Axial hypotonia, impaired upward saccades, and intellectual disability were variable features. The p.R418G and p.R418Q mutation patients had a milder phenotype. Six of seven patients had mild functional gain with clonazepam or clobazam. One patient had bilateral globus pallidal DBS at the age of 33 with marked reduction in dyskinesia, which resulted in mild functional improvement. Conclusion We further delineate the clinical features of ADCY5 gene mutations and illustrate its wide phenotypic expression. We describe mild improvement after treatment with clonazepam, clobazam, and bilateral pallidal DBS. ADCY5‐associated dyskinesia may be under‐recognized, and its diagnosis has important prognostic, genetic, and therapeutic implications

    Test Reliability and Stability of Children's Cognitive Functioning

    Get PDF
    This study addresses the test reliability of a screening test and stability of children’s cognitive functioning. Children aged 5 to 8 years in western Sydney were assessed on three occasions. The first assessment provided a baseline, with the second assessment at 2-, 4-, or 12-week intervals. The final assessment was 4 weeks later. Indicators of reliability and stability suggested that a distinction can be made between test reliability and the phenomenon (cognitive functioning) stability. Cognitive functioning was assessed using the School-Years Screening Test for the Evaluation of Mental Status (SYSTEMS). The findings have implications for indicators of reliability and stability of cognitive assessments in developmental research and clinical practice

    Systems: a screening test of higher mental function in childhood

    Get PDF
    Children with deficits of higher mental function are often referred to paediatricians and child neurologists. The referrals may occur for the specific evaluation of a child’s school difficulties or because of a symptom, such as school refusal, headache or deterioration in behaviour. It is generally accepted that examination of the higher mental abilities could be a routine part of a complete neurological examination in any child presenting with such problems. Despite this, there is very little information concerning normal values for screening tests of higher mental function at different ages in childhood
    corecore