118 research outputs found

    NM23-H1 BLOCKS CELL MOTILITY INDEPENDENTLY OF ITS KNOWN ENZYMATIC ACTIVITIES IN A COHORT OF HUMAN MELANOMA CELLS

    Get PDF
    The metastasis suppressor gene NM23-H1 has been shown to possess three enzymatic activities including nucleoside diphosphate kinase, histidine-dependent protein kinase and 3’-5’ exonuclease activity. While these properties have been demonstrated in vitro using recombinant proteins, the contribution of these activities to suppression of metastatic dissemination is unknown. Site-directed mutagenesis studies were used to identify amino acid residues which are required for proper function of each enzymatic activity associated with H1, providing a platform for studying the importance of each function on an individual basis. To assess the relevance of these activities to melanoma progression, a panel of mutants harboring selective lesions disrupting the enzymatic activities of H1 were overexpressed using stable transfection in two melanoma cell lines, WM793 (isolated from a vertical growth phase human melanoma), and the metastatic derivative cell line 1205LU. In vitro correlates of metastasis measuring motility and invasion were used in an attempt to identify the mechanism mediating H1-dependent motility suppression of cancer cells. Surprisingly, all mutants studied retained full motility suppression in this setting, suggesting that the enzymatic functions associated with H1 are not required for inhibiting cell migration. Instead, gene expression analyses conducted on the panel of stable transfectants indicate that differences in steady-state mRNA levels of genes involved in mitogen-activated protein kinase (MAPK) signaling showed significant correlations with H1 expression and motility suppression. RNAi studies have confirmed that H1-dependent modulation of the expression of two genes in particular, BRAP and IQGAP2, contribute to the observed phenotype, suggesting a novel mechanism used by NM23 to control cellular migration in human melanoma

    MS 151 Guide to the Robert G. McCorkle Family Papers, (1920-1973)

    Get PDF
    The McCorkle Family collection includes framed artwork and awards; medical instruments including bronchial and esophageal specular, and laryngoscopes; and a leather doctor’s bag. See more at MS 151

    Considerations When Using Grain Contracts

    Get PDF
    4 pp., 2 tables, 1 chartGrain contracts can help farmers manage the increasing risks of production and the price volatility of the market. This publication explains grain contracts and how to use them wisely as a risk management tool

    Mithramycin and Analogs for Overcoming Cisplatin Resistance in Ovarian Cancer

    Get PDF
    Ovarian cancer is a highly deadly malignancy in which recurrence is considered incurable. Resistance to platinum-based chemotherapy bodes a particularly abysmal prognosis, underscoring the need for novel therapeutic agents and strategies. The use of mithramycin, an antineoplastic antibiotic, has been previously limited by its narrow therapeutic window. Recent advances in semisynthetic methods have led to mithramycin analogs with improved pharmacological profiles. Mithramycin inhibits the activity of the transcription factor Sp1, which is closely linked with ovarian tumorigenesis and platinum-resistance. This article summarizes recent clinical developments related to mithramycin and postulates a role for the use of mithramycin, or its analog, in the treatment of platinum-resistant ovarian cancer

    KEAP1 Is Required for Artesunate Anticancer Activity in Non-Small-Cell Lung Cancer

    Get PDF
    Artesunate is the most common treatment for malaria throughout the world. Artesunate has anticancer activity likely through the induction of reactive oxygen species, the same mechanism of action utilized in Plasmodium falciparum infections. Components of the kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which regulates cellular response to oxidative stress, are mutated in approximately 30% of non-small-cell lung cancers (NSCLC); therefore, we tested the hypothesis that KEAP1 is required for artesunate sensitivity in NSCLC. Dose response assays identified A549 cells, which have a G333C-inactivating mutation in KEAP1, as resistant to artesunate, with an IC50 of 23.6 µM, while H1299 and H1563 cells were sensitive to artesunate, with a 10-fold lower IC50. Knockdown of KEAP1 through siRNA caused increased resistance to artesunate in H1299 cells. Alternatively, the pharmacological inhibition of NRF2, which is activated downstream of KEAP1 loss, by ML385 partially restored sensitivity of A549 cells to artesunate, and the combination of artesunate and ML385 was synergistic in both A549 and H1299 cells. These findings demonstrate that KEAP1 is required for the anticancer activity of artesunate and support the further development of NRF2 inhibitors to target patients with mutations in the KEAP1/NRF2 pathway

    Using Options to Hedge Farm and Ranch Inputs

    Get PDF
    4 pp., 3 tables, 2 figuresA call option is a pricing tool that helps producers manage the price risks associated with farm and ranch inputs. This publication offers a thorough explanation of the way call options work. It includes various strategies producers might use and illustrations of those strategies

    Hedging Milk with BFP Futures and Options

    Get PDF
    4 pp., 1 figure, 1 tableBasic Formula Price (BFP) milk futures and options can be used to hedge, or lock in, milk prices in order to manage milk price fluctuations. This publication offers information on futures contracts, basis, cash settlement and margin call. There also is a hedging example

    Preclinical Evaluation of Artesunate as an Antineoplastic Agent in Ovarian Cancer Treatment

    Get PDF
    BACKGROUND: Ovarian cancer is the deadliest gynecologic malignancy despite current first-line treatment with a platinum and taxane doublet. Artesunate has broad antineoplastic properties but has not been investigated in combination with carboplatin and paclitaxel for ovarian cancer treatment. METHODS: Standard cell culture technique with commercially available ovarian cancer cell lines were utilized in cell viability, DNA damage, and cell cycle progression assays to qualify and quantify artesunate treatment effects. Additionally, the sequence of administering artesunate in combination with paclitaxel and carboplatin was determined. The activity of artesunate was also assessed in 3D organoid models of primary ovarian cancer and RNAseq analysis was utilized to identify genes and the associated genetic pathways that were differentially regulated in artesunate resistant organoid models compared to organoids that were sensitive to artesunate. RESULTS: Artesunate treatment reduces cell viability in 2D and 3D ovarian cancer cell models. Clinically relevant concentrations of artesunate induce G1 arrest, but do not induce DNA damage. Pathways related to cell cycle progression, specifically G1/S transition, are upregulated in ovarian organoid models that are innately more resistant to artesunate compared to more sensitive models. Depending on the sequence of administration, the addition of artesunate to carboplatin and paclitaxel improves their effectiveness. CONCLUSIONS: Artesunate has preclinical activity in ovarian cancer that merits further investigation to treat ovarian cancer

    Influence of Fiber Volume and Alignment on Impact Resistance of Braided Carbon Fiber Epoxy Composites

    Get PDF
    The effect of axial tow alignment within a laminate ply stack on the impact penetration threshold for a series of composite panels was evaluated; specifically, the effect of a lateral shift in alignment to induce fiber nesting. Panels were fabricated from braided T700S carbon fiber and TenCate Advanced Composites's TC275-1 epoxy resin prepreg. Axial tows in each ply were aligned, offset, or rotated to evaluate the influence of such parameters on impact penetration resistance. Panel-to-panel variation in thickness, resin content, and fiber volume ratio were measured. Ultimately, process-related deviations drove penetration limits on impact. Influence of axial tow alignment was difficult to discern outside of the processing-induced variations between panels

    Lapatinib and Poziotinib Overcome ABCB1-Mediated Paclitaxel Resistance in Ovarian Cancer

    Get PDF
    Conventional frontline treatment for ovarian cancer consists of successive chemotherapy cycles of paclitaxel and platinum. Despite the initial favorable responses for most patients, chemotherapy resistance frequently leads to recurrent or refractory disease. New treatment strategies that circumvent or prevent mechanisms of resistance are needed to improve ovarian cancer therapy. We established in vitro paclitaxel-resistant ovarian cancer cell line and organoid models. Gene expression differences in resistant and sensitive lines were analyzed by RNA sequencing. We manipulated candidate genes associated with paclitaxel resistance using siRNA or small molecule inhibitors, and then screened the cells for paclitaxel sensitivity using cell viability assays. We used the Bliss independence model to evaluate the anti-proliferative synergy for drug combinations. ABCB1 expression was upregulated in paclitaxel-resistant TOV-21G (q \u3c 1x10-300), OVCAR3 (q = 7.4x10-156) and novel ovarian tumor organoid (p = 2.4x10-4) models. Previous reports have shown some tyrosine kinase inhibitors can inhibit ABCB1 function. We tested a panel of tyrosine kinase inhibitors for the ability to sensitize resistant ABCB1-overexpressing ovarian cancer cell lines to paclitaxel. We observed synergy when we combined poziotinib or lapatinib with paclitaxel in resistant TOV-21G and OVCAR3 cells. Silencing ABCB1 expression in paclitaxel-resistant TOV-21G and OVCAR3 cells reduced paclitaxel IC50 by 20.7 and 6.2-fold, respectively. Furthermore, we demonstrated direct inhibition of paclitaxel-induced ABCB1 transporter activity by both lapatinib and poziotinib. In conclusion, lapatinib and poziotinib combined with paclitaxel synergizes to inhibit the proliferation of ABCB1-overexpressing ovarian cancer cells in vitro. The addition of FDA-approved lapatinib to second-line paclitaxel therapy is a promising strategy for patients with recurrent ovarian cancer
    • …
    corecore