64 research outputs found

    Congenital Short Bowel Syndrome: from clinical and genetic diagnosis to the molecular mechanisms involved in intestinal elongation

    Get PDF
    AbstractCongenital Short Bowel Syndrome (CSBS) is a rare gastrointestinal disorder in which the mean length of the small intestine is substantially reduced when compared to its normal counterpart. Families with several affected members have been described and CSBS has been suggested to have a genetic basis. Recently, our group found mutations in CLMP as the cause of the recessive form of CSBS, and mutations in FLNA as the cause of the X-linked form of the disease. These findings have improved the quality of genetic counselling for CSBS patients and made prenatal diagnostics possible. Moreover, they provided a reliable starting point to further investigate the pathogenesis of CSBS, and to better understand the development of the small intestine. In this review, we present our current knowledge on CSBS and discuss hypotheses on how the recent genetic findings can help understand the cause of CSBS

    TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human

    Get PDF
    TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning

    Lack of evidence for a causal role of CALR3 in monogenic cardiomyopathy

    Get PDF
    The pathogenicity of previously published disease-associated genes and variants is sometimes questionable. Large-scale, population-based sequencing studies have uncovered numerous false assignments of pathogenicity. Misinterpretation of sequence variants may have serious implications for the patients and families involved, as genetic test results are increasingly being used in medical decision making. In this study, we assessed the role of the calreticulin-3 gene (CALR3) in cardiomyopathy. CALR3 has been included in several cardiomyopathy gene panels worldwide. Its inclusion is based on a single publication describing two missense variants in patients with hypertrophic cardiomyopathy. In our national cardiomyopathy cohort (n = 6154), we identified 17 unique, rare heterozygous CALR3 variants in 48 probands. Overall, our patient cohort contained a significantly higher number of rare CALR3 variants compared to the ExAC population (p = 0.0036). However, after removing a potential Dutch founder variant, no statistically significant difference was found (p = 0.89). In nine probands, the CALR3 variant was accompanied by a disease-causing variant in another, well-known cardiomyopathy gene. In three families, the CALR3 variant did not segregate with the disease. Furthermore, we could not demonstrate calreticulin-3 protein expression in myocardial tissues at various ages. On the basis of these findings, it seems highly questionable that variants in CALR3 are a monogenic cause of cardiomyopathy

    Intestinal multicellular organoids to study colorectal cancer

    Get PDF
    International audienceModeling colorectal cancer (CRC) using organoids has burgeoned in the last decade, providing enhanced in vitro models to study the development and possible treatment options for this type of cancer. In this review, we describe both normal and CRC intestinal organoid models and their utility in the cancer research field. Besides highlighting studies that develop epithelial CRC organoid models, i.e. organoids without tumor microenvironment (TME) cellular components, we emphasize on the need for TME in CRC modeling, to help reduce translational disparities in this area. Also, we discuss the utilization of CRC organoids derived from pluripotent stem cells, as well as their potential to be used in cancer research. Finally, limitations and challenges in the current CRC organoids field, are discussed

    In Reply:

    No full text

    Current concepts in RET-related genetics, signaling and therapeutics

    Get PDF
    The receptor tyrosine kinase RET is expressed in cell lineages derived from the neural crest and has a key role in regulating cell proliferation, migration, differentiation and survival during embryogenesis. Germline and somatic mutations in RET that produce constitutively activated receptors cause the cancer syndrome multiple endocrine neoplasia type 2 and several endocrine and neural-crest-derived tumors, whereas mutations resulting in nonfunctional RET or lower expression of RET are found in individuals affected with Hirschsprung disease. This review focuses on the genetics and molecular mechanisms underlying the different inherited human neural-crest-related disorders in which RET dysfunction has a crucial role and discusses RET as a potential therapeutic target.

    Histone Methyltransferase Gene SETD2

    No full text

    A combinatorial panel for flow cytometry-based isolation of enteric nervous system cells from human intestine

    Get PDF
    Efficient isolation of neurons and glia from the human enteric nervous system (ENS) is challenging because of their rare and fragile nature. Here, we describe a staining panel to enrich ENS cells from the human intestine by fluorescence-activated cell sorting (FACS). We find that CD56/CD90/CD24 co-expression labels ENS cells with higher specificity and resolution than previous methods. Surprisingly, neuronal (CD24, TUBB3) and glial (SOX10) selective markers appear co-expressed by all ENS cells. We demonstrate that this contradictory staining pattern is mainly driven by neuronal fragments, either free or attached to glial cells, which are the most abundant cell types. Live neurons can be enriched by the highest CD24 and CD90 levels. By applying our protocol to isolate ENS cells for single-cell RNA sequencing, we show that these cells can be obtained with high quality, enabling interrogation of the human ENS transcriptome. Taken together, we present a selective FACS protocol that allows enrichment and discrimination of human ENS cells, opening up new avenues to study this complex system in health and disease

    Ras/ERK1/2-mediated STAT3 Ser727 Phosphorylation by Familial Medullary Thyroid Carcinoma-associated RET Mutants Induces Full Activation of STAT3 and Is Required for c-fos Promoter Activation, Cell Mitogenicity, and Transformation

    No full text
    The precise role of STAT3 Ser727 phosphorylation in RET-mediated cell transformation and oncogenesis is not well understood. In this study, we have shown that familial medullary thyroid carcinoma (FMTC) mutants RETY791F and RETS891A induced, in addition to Tyr705 phosphorylation, constitutive STAT3 Ser727 phosphorylation. Using inhibitors and dominant negative constructs, we have demonstrated that RETY791F and RETS891A induce STAT3 Ser727 phosphorylation via a canonical Ras/ERK1/2 pathway and that integration of the Ras/ERK1/2/ELK-1 and STAT3 pathways was required for up-regulation of the c-fos promoter by FMTC-RET. Moreover, inhibition of ERK1/2 had a more severe effect on cell proliferation and cell phenotype in HEK293 cells expressing RETS891A compared with control and RETWT-transfected cells. The transforming activity of RETY791F and RETS891A in NIH-3T3 cells was also inhibited by U0126, indicating a role of the ERK1/2 pathway in RET-mediated transformation. To investigate the biological significance of Ras/ERK1/2-induced STAT3 Ser727 phosphorylation for cell proliferation and transformation, N-Ras-transformed NIH-3T3 cells were employed. These cells displayed elevated levels of activated ERK1/2 and Ser727-phosphorylated STAT3, which were inhibited by treatment with U0126. Importantly, overexpression of STAT3, in which the Ser727 was mutated into Ala (STAT3S727A), rescued the transformed phenotype of N-Ras-transformed cells. Immunohistochemistry in tumor samples from FMTC patients showed strong nuclear staining of phosphorylated ERK1/2 and Ser727 STAT3. These data show that FMTC-RET mutants activate a Ras/ERK1/2/STAT3 Ser727 pathway, which plays an important role in cell mitogenicity and transformation
    corecore