67 research outputs found

    The potential impacts of migratory difficulty, including warmer waters and altered flow conditions, on the reproductive success of salmonid fishes

    Get PDF
    AbstractClimate change and urbanisation of watercourses affect water temperatures and current flow velocities in river systems on a global scale. This represents a particularly critical issue for migratory fish species with complex life histories that use rivers to reproduce. Salmonids are migratory keystone species that provide substantial economical value to ecosystems and human societies. Consequently, a comprehensive understanding of the effects of environmental stressors on their reproductive success is critical in order to ensure their continued abundance during future climatic change. Salmonids are capital breeders, relying entirely on endogenous energy stores to fuel return migration to their natal spawning sites and reproduction upon arrival. Metabolic rates and cost of transport en-route increase with temperature and at extreme temperatures, swimming is increasingly fuelled anaerobically, resulting in an oxygen debt and reduced capacity to recover from exhaustive exercise. Thermally challenged salmonids also produce less viable gametes, which themselves are affected by water temperature after release. Passage through hydrological barriers and temperature changes both affect energy expenditure. As a result, important energetic tradeoffs emerge between extra energy used during migration and that available for other facets of the reproductive cycle, such as reproductive competition and gamete production. However, studies identifying these tradeoffs are extremely sparse. This review focuses on the specific locomotor responses of salmonids to thermal and hydrological challenges, identifying gaps in our knowledge and highlighting the potential implications for key aspects of their reproduction

    Avian cerebellar floccular fossa size is not a proxy for flying ability in birds

    Get PDF
    Extinct animal behavior has often been inferred from qualitative assessments of relative brain region size in fossil endocranial casts. For instance, flight capability in pterosaurs and early birds has been inferred from the relative size of the cerebellar flocculus, which in life protrudes from the lateral surface of the cerebellum. A primary role of the flocculus is to integrate sensory information about head rotation and translation to stabilize visual gaze via the vestibulo-occular reflex (VOR). Because gaze stabilization is a critical aspect of flight, some authors have suggested that the flocculus is enlarged in flying species. Whether this can be further extended to a floccular expansion in highly maneuverable flying species or floccular reduction in flightless species is unknown. Here, we used micro computed-tomography to reconstruct “virtual” endocranial casts of 60 extant bird species, to extract the same level of anatomical information offered by fossils. Volumes of the floccular fossa and entire brain cavity were measured and these values correlated with four indices of flying behavior. Although a weak positive relationship was found between floccular fossa size and brachial index, no significant relationship was found between floccular fossa size and any other flight mode classification. These findings could be the result of the bony endocranium inaccurately reflecting the size of the neural flocculus, but might also reflect the importance of the flocculus for all modes of locomotion in birds. We therefore conclude that the relative size of the flocculus of endocranial casts is an unreliable predictor of locomotor behavior in extinct birds, and probably also pterosaurs and non-avian dinosaurs

    Scaling of avian primary feather length

    Get PDF
    The evolution of the avian wing has long fascinated biologists, yet almost no work includes the length of primary feathers in consideration of overall wing length variation. Here we show that the length of the longest primary feather () contributing to overall wing length scales with negative allometry against total arm (ta = humerus+ulna+manus). The scaling exponent varied slightly, although not significantly so, depending on whether a species level analysis was used or phylogeny was controlled for using independent contrasts: . The scaling exponent was not significantly different from that predicted (0.86) by earlier work. It appears that there is a general trend for the primary feathers of birds to contribute proportionally less, and ta proportionally more, to overall wingspan as this dimension increases. Wingspan in birds is constrained close to mass (M1/3) because of optimisation for lift production, which limits opportunities for exterior morphological change. Within the wing, variations in underlying bone and feather lengths nevertheless may, in altering the joint positions, permit a range of different flight styles by facilitating variation in upstroke kinematics

    Evidence for a Mass Dependent Step-Change in the Scaling of Efficiency in Terrestrial Locomotion

    Get PDF
    A reanalysis of existing data suggests that the established tenet of increasing efficiency of transport with body size in terrestrial locomotion requires re-evaluation. Here, the statistical model that described the data best indicated a dichotomy between the data for small (<1 kg) and large animals (>1 kg). Within and between these two size groups there was no detectable difference in the scaling exponents (slopes) relating metabolic (Emet) and mechanical costs (Emech, CM) of locomotion to body mass (Mb). Therefore, no scaling of efficiency (Emech, CM/Emet) with Mb was evident within each size group. Small animals, however, appeared to be generally less efficient than larger animals (7% and 26% respectively). Consequently, it is possible that the relationship between efficiency and Mb is not continuous, but, rather, involves a step-change. This step-change in the efficiency of locomotion mirrors previous findings suggesting a postural cause for an apparent size dichotomy in the relationship between Emet and Mb. Currently data for Emech, CM is lacking, but the relationship between efficiency in terrestrial locomotion and Mb is likely to be determined by posture and kinematics rather than body size alone. Hence, scaling of efficiency is likely to be more complex than a simple linear relationship across body sizes. A homogenous study of the mechanical cost of terrestrial locomotion across a broad range of species, body sizes, and importantly locomotor postures is a priority for future research

    A Potential Role for Bat Tail Membranes in Flight Control

    Get PDF
    Wind tunnel tests conducted on a model based on the long-eared bat Plecotus auritus indicated that the positioning of the tail membrane (uropatagium) can significantly influence flight control. Adjusting tail position by increasing the angle of the legs ventrally relative to the body has a two-fold effect; increasing leg-induced wing camber (i.e., locally increased camber of the inner wing surface) and increasing the angle of attack of the tail membrane. We also used our model to examine the effects of flying with and without a tail membrane. For the bat model with a tail membrane increasing leg angle increased the lift, drag and pitching moment (nose-down) produced. However, removing the tail membrane significantly reduced the change in pitching moment with increasing leg angle, but it had no significant effect on the level of lift produced. The drag on the model also significantly increased with the removal of the tail membrane. The tail membrane, therefore, is potentially important for controlling the level of pitching moment produced by bats and an aid to flight control, specifically improving agility and manoeuvrability. Although the tail of bats is different from that of birds, in that it is only divided from the wings by the legs, it nonetheless, may, in addition to its prey capturing function, fulfil a similar role in aiding flight control

    Functional Morphometric Analysis of the Furcula in Mesozoic Birds

    Get PDF
    The furcula displays enormous morphological and structural diversity. Acting as an important origin for flight muscles involved in the downstroke, the form of this element has been shown to vary with flight mode. This study seeks to clarify the strength of this form-function relationship through the use of eigenshape morphometric analysis coupled with recently developed phylogenetic comparative methods (PCMs), including phylogenetic Flexible Discriminant Analysis (pFDA). Additionally, the morphospace derived from the furculae of extant birds is used to shed light on possible flight adaptations of Mesozoic fossil taxa. While broad conclusions of earlier work are supported (U-shaped furculae are associated with soaring, strong anteroposterior curvature with wing-propelled diving), correlations between form and function do not appear to be so clear-cut, likely due to the significantly larger dataset and wider spectrum of flight modes sampled here. Interclavicular angle is an even more powerful discriminator of flight mode than curvature, and is positively correlated with body size. With the exception of the close relatives of modern birds, the ornithuromorphs, Mesozoic taxa tend to occupy unique regions of morphospace, and thus may have either evolved unfamiliar flight styles or have arrived at similar styles through divergent musculoskeletal configurations

    Reassessment of the wing feathers of Archaeopteryx lithographica suggests no robust evidence for the presence of elongated dorsal wing coverts

    No full text
    Recently it was proposed that the primary feathers of Archaeopteryx lithographica (HMN1880) were overlaid by long covert feathers, and that a multilayered feathered wing was a feature of early fossils with feathered forelimbs. The proposed long covert feathers of Archaeopteryx were previously interpreted as dorsally displaced remiges or a second set of impressions made by the wing. The following study shows that the qualitative arguments forwarded in support of the elongated covert hypothesis are neither robust nor supported quantitatively. The idea that the extant bird wing with its single layer of overlapping primaries evolved from an earlier multilayered heavily coveted feathered forelimb as seen in Anchiornis huxleyi is reasonable. At this juncture, however, it is premature to conclude unequivocally that the wing of Archaeopteryx consisted of primary feathers overlaid with elongated coverts

    The calculated angles of the primary feathers and proposed coverts feather rachises on the left- and right-wing of <i>Archaeopteryx</i> (HMN1880).

    No full text
    <p>Proposed coverts and primary feathers are numbered from left to right and bottom to top in figures 1D and 2D of Longrich <i>et al</i>. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0093963#pone.0093963-Longrich1" target="_blank">[10]</a> respectively. The angles are calculated relative to the vertical axis in the figures.</p

    Response to comments "Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability"

    No full text
    Paul and Zheng et al. challenge our conclusions regarding the flight of Confuciusornis and Archaeopteryx, which derive from our method of assessing flight ability from estimated feather strength. They suggest that our mass and rachis data for these fossil birds are incorrect. Neither comment, however, invalidates our method nor alters conclusions of poor flight ability based upon our original data. We encourage researchers to use our method before critiquing our conclusions regarding early bird flight
    • …
    corecore