815 research outputs found

    Stability and Reversibility of Lithium Borohydrides Doped by Metal Halides and Hydrides

    Get PDF
    In an effort to develop reversible metal borohydrides with high hydrogen storage capacities and low dehydriding temperature, doping LiBH4 with various metal halides and hydrides has been conducted. Several metal halides such as TiCl3, TiF3, and ZnF2 effectively reduced the dehydriding temperature through a cation exchange interaction. Some of the halide doped LiBH4 are partially reversible. The LiBH4 + 0.1TiF3 desorbed 3.5 wt % and 8.5 wt % hydrogen at 150 and 450 °C, respectively, with subsequent reabsorption of 6 wt % hydrogen at 500 °C and 70 bar observed. XRD and NMR analysis of the rehydrided samples confirmed the reformation of LiBH4. The existence of the (B12H12)−2 species in dehydrided and rehydrided samples gives insight into the resultant partial reversibility. A number of other halides, MgF2, MgCl2, CaCl2, SrCl2, and FeCl3, did not reduce the dehydriding temperature of LiBH4 significantly. XRD and TGA-RGA analyses indicated that an increasing proportion of halides such as TiCl3, TiF3, and ZnCl2 from 0.1 to 0.5 mol makes lithium borohydrides less stable and volatile. Although the less stable borohydrides such as LiBH4 + 0.5TiCl3, LiBH4 + 0.5TiF3, and LiBH4 + 0.5ZnCl2 release hydrogen at room temperature, they are not reversible due to unrecoverable boron loss caused by diborane emission. In most cases, doping that produced less stable borohydrides also reduced the reversible hydrogen uptake. It was also observed that halide doping changed the melting points and reduced air sensitivity of lithium borohydrides

    Hydrogen Motion in Magnesium Hydride by NMR

    Get PDF
    In coarse-grained MgH2, the diffusive motion of hydrogen remains too slow (<10^5 hops s^−1) to narrow the H NMR line up to 400 °C. Slow-motion dipolar relaxation time T1D measurements reveal the motion, with hopping rate ωH from 0.1 to 430 s^−1 over the range of 260 to 400 °C, the first direct measurement of H hopping in MgH2. The ωH data are described by an activation energy of 1.72 eV (166 kJ/mol) and attempt frequency of 2.5 × 10^15 s^−1. In ball-milled MgH2 with 0.5 mol % added Nb2O5 catalyst, line-narrowing is evident already at 50 °C. The line shape shows distinct broad and narrow components corresponding to immobile and mobile H, respectively. The fraction of mobile H grows continuously with temperature, reaching ∼30% at 400 °C. This demonstrates that this material’s superior reaction kinetics are due to an increased rate of H motion, in addition to the shorter diffusion paths from ball-milling. In ball-milled MgH2 without additives, the line-narrowed component is weaker and is due, at least in part, to trapped H2 gas. The spin−lattice relaxation rates T1^−1 of all materials are compared, with ball-milling markedly increasing T1^−1. The weak temperature dependence of T1^−1 suggests a mechanism with paramagnetic relaxation centers arising from the mechanical milling

    Nonlinear Gulf Stream Interaction with the Deep Western Boundary Current System: Observations and a Numerical Simulation

    Get PDF
    Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.NCC2-1371Approved for public release; distribution is unlimited

    ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments

    Get PDF
    The Arabidopsis aberrant testa shape (ats) mutant produces a single integument instead of the two integuments seen in wild-type ovules. Cellular anatomy and patterns of marker gene expression indicate that the single integument results from congenital fusion of the two integuments of the wild type. Isolation of the ATS locus showed it to encode a member of the KANADI (KAN) family of putative transcription factors, previously referred to as KAN4. ATS was expressed at the border between the two integuments at the time of their initiation, with expression later confined to the abaxial layer of the inner integument. In an inner no outer (ino) mutant background, where an outer integument does not form, the ats mutation led to amorphous inner integument growth. The kan1 kan2 double mutant exhibits a similar amorphous growth of the outer integument without affecting inner integument growth. We hypothesize that ATS and KAN1/KAN2 play similar roles in the specification of polarity in the inner and outer integuments, respectively, that parallel the known roles of KAN proteins in promoting abaxial identity during leaf development. INO and other members of the YABBY gene family have been hypothesized to have similar parallel roles in outer integument and leaf development. Together, these two hypotheses lead us to propose a model for normal integument growth that also explains the described mutant phenotypes

    Multiplexed Illumina sequencing libraries from picogram quantities of DNA

    Get PDF
    Background: High throughput sequencing is frequently used to discover the location of regulatory interactions on chromatin. However, techniques that enrich DNA where regulatory activity takes place, such as chromatin immunoprecipitation (ChIP), often yield less DNA than optimal for sequencing library preparation. Existing protocols for picogram-scale libraries require concomitant fragmentation of DNA, pre-amplification, or long overnight steps. Results: We report a simple and fast library construction method that produces libraries from sub-nanogram quantities of DNA. This protocol yields conventional libraries with barcodes suitable for multiplexed sample analysis on the Illumina platform. We demonstrate the utility of this method by constructing a ChIP-seq library from 100 pg of ChIP DNA that demonstrates equivalent genomic coverage of target regions to a library produced from a larger scale experiment. Conclusions: Application of this method allows whole genome studies from samples where material or yields are limiting

    Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates.

    Get PDF
    UnlabelledInvestigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (&gt;85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne.ImportancePropionibacterium acnes is a dominant member of the skin microflora and has also been implicated in the pathogenesis of acne; however, little is known about the bacteriophages that coexist with and infect this bacterium. Here we present the novel genome sequences of 11 P. acnes phages, thereby substantially increasing the amount of available genomic information about this phage population. Surprisingly, we find that, unlike other well-studied bacteriophages, P. acnes phages are highly homogeneous and show a striking lack of genetic diversity, which is perhaps related to their unique and restricted habitat. They also share a broad ability to kill clinical isolates of P. acnes; phage resistance is not prevalent, but when detected, it appears to be conferred by chromosomally encoded immunity elements within the host genome. We believe that these phages display numerous features that would make them ideal candidates for the development of a phage-based therapy for acne

    Erosion Coatings Developed to Increase the Life and Durability of Composites

    Get PDF
    Both the NASA Glenn Research Center and the Allison Advanced Development Company (AADC) have worked to develop and demonstrate erosion-resistant coatings that would increase the life and durability of composite materials used in commercial aircraft engines. These composite materials reduce component weight by 20 to 30 percent and result in less fuel burn and emissions and more fuel savings. Previously, however, their use was limited because of poor erosion resistance, which causes concerns about safety and leads to high maintenance costs. The coatings were tested by the University of Cincinnati, and the composites were manufactured by Texas Composites and coated by Engelhard and NASA Glenn. Rolls-Royce Corporation uses composite materials, which are stronger and less dense than steel or titanium, to make bypass vanes for their AE3007 engines. These engines are widely used in regional jet aircraft (Embraer) and unmanned air vehicles such as the Northrop Grumman Global Hawk. Coatings developed by NASA/Rolls-Royce can reduce erosion from abrasive materials and from impurities in the air that pass over these vanes, allowing Rolls-Royce to take advantage of the benefits of composite materials over titanium without the added costs of increased maintenance and/or engine failure. The Higher Operating Temperature Propulsion Components (HOTPC) Project developed cost-effective, durable coatings as part of NASA's goal to increase aviation system capacity growth. These erosion coatings will reduce the number of special inspections or instances of discontinued service due to erosion, allowing aircraft capacity to be maintained without inconveniencing the traveling public. A specific example of extending component life showed that these coatings increased the life of graphite fiber and polymer composite bypass vanes up to 8 times over that of the uncoated vanes. This increased durability allows components to operate to full design life without the fear of wear or failure. Recently, Rolls-Royce completed over 2000 hr of engine testing with the coated fan exit bypass vanes. There was no loss of coating after nearly 5000 typical engine cycles. Midway through the engine tests, the coated vanes were removed from the engine during a scheduled maintenance and inspection period. The vanes were shipped back to Glenn, where they underwent further stress testing in the Structural Dynamics Lab, mimicking more extreme conditions than those typical of the AE3007 engine cycle. These vanes were then replaced in the AE3007 and subjected to another 1000 hr of engine tests. Once again, there was no loss of coating and only a minimal appearance of cracking
    corecore