46 research outputs found

    Early-cleavage is a reliable predictor for embryo implantation in the GnRH agonist protocols but not in the GnRH antagonist protocols

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To test if early-cleavage was a strong predictor of pregnancy in patients receiving either a GnRH agonist long protocol or a GnRH antagonist protocol for in-vitro fertilization treatment (IVF) and intracytoplasmic sperm injection (ICSI).</p> <p>Methods</p> <p>This retrospective study included 534 patients undergoing a fresh cycle of oocyte retrieval and the day-3 embryo transfer (from 22 to 46 years old). Of the 534 patients treated, 331 received a GnRH agonist long stimulation protocol (GnRH agonist group) for ovarian stimulation and 203 patients received a GnRH antagonist protocol (GnRH antagonist group). In each group, patients who had at least one early-cleavage embryo transferred were designated as the 'early-cleavage' subgroup. Patients who had no early-cleavage embryos transferred were designated as the 'late-cleavage' subgroup.</p> <p>Results</p> <p>The early cleavage rate was significantly lower in the GnRH antagonist group compared with that in the GnRH agonist group (IVF cycles: 34% versus 20%; ICSI cycles: 50% versus 37.8%, respectively, P < 0.0001). In the GnRH agonist group, the pregnancy rates were significantly higher in the early-cleavage subgroup than those in the late-cleavage subgroup (53.7% vs 33.9%, <it>P </it>< 0.0001). In the GnRH antagonist group, the pregnancy rates were not significantly different between the early-cleavage and late-cleavage subgroups (45.9% vs 43.8%, P > 0.05).</p> <p>Conclusion</p> <p>Early cleavage of zygote is not a reliable predictor for embryo implantation potential in using the GnRH antagonist protocol. Furthermore, the implantation rates between the GnRH agonist and GnRH antagonist groups were comparable.</p

    SERPINE2, an inhibitor of plasminogen activators, is highly expressed in the human endometrium during the secretory phase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SERPINE2, also known as protease nexin-1, belongs to the serine protease inhibitor (SERPIN) superfamily. It is one of the potent SERPINs that modulates the activity of plasminogen activators (PAs). PAs and their SERPIN inhibitors, such as SERPINB2 and SERPINE1, were expressed in the human endometrium and were implicated in implantation. However, expression data about SERPINE2 in the human endometrium is still unknown. Thus, we conducted an investigation to reveal the spatiotemporal and cellular expression of SERPINE2 in the human uterus during the menstrual cycle.</p> <p>Methods</p> <p>Seven patients who underwent a hysterectomy and samples of 120 archived patients' endometrial curettage or parts of the uterus that were formalin-fixed and embedded in paraffin. Western blotting was performed to evaluate the specificity and sensitivity of the antibody. Immunohistochemistry was conducted to localize the SERPINE2 expression site. Quantitative analysis was conducted to evaluate expression levels of SERPINE2 in various sub-phases of the menstrual cycle.</p> <p>Results</p> <p>The SERPINE2 protein was primarily detected in the uterine fluid during the mid- and late-secretory phases of the menstrual cycle. It was predominantly expressed in the luminal and glandular epithelium, less in the myometrium, and only dispersedly in certain stromal cells throughout the menstrual cycle. A quantitative analysis of expression levels of SERPINE2 in the glandular epithelium revealed that it was highly expressed in the endometrium during the secretory phase compared to the proliferative phase.</p> <p>Conclusions</p> <p>The SERPINE2 protein is highly expressed in the endometrium during the secretory phase, indicating that it may participate in tissue remodeling involved in implantation.</p

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Secretory mouse quiescin sulfhydryl oxidase 1 aggregates defected human and mouse spermatozoa in vitro and in vivo

    Get PDF
    A flavin-dependent enzyme quiescin Q6 sulfhydryl oxidase 1 (QSOX1) catalyzes the oxidation of thiol groups into disulfide bonds. QSOX1 is prominently expressed in the seminal plasma. However, its role in male reproduction is elusive. Here, we purified the secreted form of QSOX1, i.e., QSOX1c, from mouse seminal vesicle secretions and revealed for the first time its function involved in sperm physiology. Exogenous addition of QSOX1c time-dependently promoted the in vitro aggregation of thiol-rich, oxidative stressed, and apoptotic mouse and human sperm cells. Also, in vivo aggregated sperm cells collected from mouse uterine and human ejaculates also showed high levels of QSOX1c, intracellular reactive oxygen species, annexin V, and free thiols. In summary, our studies demonstrated that QSOX1c could agglutinate spermatozoa susceptible to free radical attack and apoptosis. This characteristic may provide an opportunity to separate defective sperm cells and improve sperm quality before artificial insemination in humans and animals

    Spatiotemporal Protein Expression Profiles of QSOX1 in the Murine Uterus, Placenta, and Embryo during Pregnancy

    No full text
    Quiescin Q6 sulfhydryl oxidase 1 (QSOX1) catalyzes the oxidation of the sulfhydryl group to disulfide bond and is widely expressed in various tissues. This study focuses on investigating QSOX1â€Čs spatiotemporal and cellular protein expression profile of the pregnant uterus, placenta, and developing embryo during mouse pregnancy. Immunohistochemical staining was used to reveal the localization of QSOX1 protein, and HistoQuest was applied to quantify protein levels. The expression level of QSOX1 in the decidua and muscle cells of the pregnant uterus fluctuated dramatically during pregnancy. QSOX1 was ubiquitously expressed in the labyrinth, junction zone, and chorionic plate in the placenta. The quantitative analysis found that this protein was highly expressed in the spinal cord, lens, midbrain, cerebellum, medulla oblongata, and tooth of mouse embryos, followed by the heart, intercostal muscle, diaphragm, intermediate zone, extrinsic ocular muscle, spine, pons, epidermis, tongue, ganglion, vomeronasal organ, thoracic vertebrae, and thymus. Interestingly, QSOX1 was also markedly expressed in olfactory system tissues. This comprehensive spatiotemporal study of QSOX1 protein expression will provide a basis for further investigations of the QSOX1 physiological function in the pregnant uterus, placenta, and developing embryo

    Day 4 good morula embryo transfer provided compatible live birth rate with day 5 blastocyst embryo in fresh IVF/ET cycles

    No full text
    Objective: Embryo transfers during cleavage stage (day 2 or day 3) and blastocyst stages (day 5 or day 6) are common in current daily practice in fresh IVF/ET cycles. Data regarding transferring day 4 embryos, morula/compact stage, is still restricted and the grading system is also inconsistent, as between IVF clinics. This study provided a new detailed classification system for morula/compact stage embryos and compared successes rates between day 4 and day 5 ET. Materials and methods: This was a retrospective study. A review of medical records from January 1st, 2013, to December 31st 2015, performed for all conventional insemination and ICSI cycles with a GnRH-antagonist protocol at the Infertility Division of MacKay Memorial Hospital in Taipei City, Taiwan. Results: There were 427 cycles included in our study, 107 in study group (day 4 MET) and 320 in control group (day 5 BET). Pregnancy rates and live birth rate were compatible, as between morula embryo transfer (MET) and blastocyst embryo transfer (BET). The implantation rate (36.3% vs. 39.6%, respectively, p = 0.500), clinical pregnancy rate (49.5% vs. 51.9%, respectively, p = 0.737), and live birth rate (42.1% vs. 45.6%, respectively, p = 0.574) were statistically insignificant between groups. The term birth rate was statistically higher in the MET group than in the BET group (95.7% vs. 79.5%, respectively, p = 0.006). When the clinical outcomes between day 4 good MET and day 5 good BET were compared, the results were compatible. The implantation rate (48.8% vs. 41.1%, respectively, p = 0.335), clinical pregnancy rate (55.0% vs. 53.2%, respectively, p = 0.867), and live birth rate (47.5% vs. 47.1%, respectively, p = 1.000) showed no significant difference. The term birth rate was also higher in day 4 good MET group than in day 5 good BET group (100% vs. 78.3%, respectively, p = 0.025). Conclusion: In this study, we performed day 4 MET avoid BET on Sunday. The grading system we provided was more detailed for embryo selection and it was easier to remember. Our data showed that morula embryo transfer might be a flexible, easier and applicable method for embryo transfer in daily routine

    Correlation between Sperm Micro Ribonucleic Acid-34b and -34c Levels and Clinical Outcomes of Intracytoplasmic Sperm Injection in Men with Male Factor Infertility

    No full text
    Few studies have examined the correlation between sperm miRNA levels and clinical outcomes of intracytoplasmic sperm injection (ICSI). In this study, we aimed to assess the correlation of sperm miR-34b, miR-34c, miR-122, and miR-429 levels with ICSI outcomes in men with teratozoospermia and asthenozoospermia. TaqMan microRNA quantitative polymerase chain reaction was used to evaluate the relative expression of miRNAs in sperm. The relative miRNA levels quantified using a comparative method found that the four miRNAs were not associated with fertilization rate and early embryo development. However, revels of miR-34b and miR-34c in teratozoospermia sperm of the live birth group were significantly higher than those in the non-live birth group. Receiver operating characteristic curve analysis revealed that the optimal cut-off delta cycle threshold values of miR-34b and miR-34c were 8.630 and 7.883, respectively. Statistical analysis found that the levels of miR-34b and the miR-34c in teratozoospermic and asthenozoospermic sperm above the thresholds were not associated with the fertilization rate and the high-quality embryo rate above 50%; however, they were more likely to exhibit higher implantation, pregnancy, and live birth rates. miR-34b and miR-34c were significantly associated with ICSI clinical outcomes in male factor infertility, especially teratozoospermia. Further validation is required before it becomes a clinically valid reference indicator
    corecore