131 research outputs found

    Pattern of antioxidant enzyme activities and hydrogen peroxide content during developmental stages of rhizogenesis from hypocotyl explants of Mesembryanthemum crystallinum L.

    Get PDF
    KEY MESSAGE: H(2)O(2)is necessary to elicit rhizogenic action of auxin. Activities of specific catalase and manganese superoxide dismutase forms mark roots development. ABSTRACT: Hypocotyl explants of Mesembryanthemum crystallinum regenerated roots on medium containing 2,4-dichlorophenoxyacetic acid. Explants became competent to respond to the rhizogenic action of auxin on day 3 of culture, when hydrogen peroxide content in cultured tissue was the highest. l-Ascorbic acid added to the medium at 5 μM lowered the H(2)O(2) level, inhibited rhizogenesis and induced non-regenerative callus, suggesting that certain level of H(2)O(2) is required to promote root initiation. Coincident with the onset of rhizogenic determination, meristemoids formed at the periphery of the hypocotyl stele and the activity of the manganese form of superoxide dismutase, MnSOD-2 was induced. Once induced, MnSOD-2 activity was maintained through the post-determination phase of rooting, involving root growth. MnSOD-2 activity was not found in non-rhizogenic explants maintained in the presence of AA. Analyses of the maximum photochemical efficiency of photosystem II and the oxygen uptake rate revealed that the explants were metabolically arrested during the predetermination stage of rhizogenesis. Respiratory and photosynthetic rates were high during root elongation and maturation. Changes in catalase and peroxidase activities correlated with fluctuations of endogenous H(2)O(2) content throughout rhizogenic culture. Expression of a specific CAT-2 form accompanied the post-determination stage of rooting and a high rate of carbohydrate metabolism during root growth. On the other hand, the occurrence of MnSOD-2 activity did not depend on the metabolic status of explants. The expression of MnSOD-2 activity throughout root development seems to relate it specifically to root metabolism and indicates it as a molecular marker of rhizogenesis in M. crystallinum

    Influence of anti- and prooxidants on rhizogenesis from hypocotyls of Mesembryanthemum crystallinum L. cultured in vitro

    Get PDF
    The enrichment with antioxidants (glutathione or ascorbate) or prooxidants (alloxan, methylviologen, hydrogen peroxide) of root inducing medium significantly decreased rhizogenesis frequency (alloxan, hydrogen peroxide) or inhibited roots regeneration (ascorbate, methylviologen) during the in vitro culture of Mesembryanthemum crystallinum L. hypocotyls. The adventitious roots morphology, root hairs length and density, was also influenced. Changes in the rhizogenesis course were related to the differences in hydrogen peroxide concentration during following days of culture between explants exhibiting morphogenic potential and those without the ability to form adventitious roots. In explants with morphogenic potential, rhizogenesis induction was always accompanied by a high level of hydrogen peroxide followed by the decrease in H_{2}O_{2} content in following days. In contrast, in the explants without regeneration potential, the level of hydrogen peroxide was increasing during the culture period. Activity patterns of superoxide dismutase (SOD) and guaiacol peroxidase (POX) in the following days of culture were similar in the explants exhibiting regeneration potential cultured on different media. Total activity of SOD decreased during initial days of culture and then increased due to the activation of additional SOD isoform described as MnSODII. The activity of POX was low during the rhizogenesis induction, and then increased during following days of culture; the increase was correlated with the decrease in hydrogen peroxide content. In the explants without the ability to regenerate roots, the total activity of SOD was low throughout the whole culture period, whereas the POX activity was significantly higher than in hypocotyls with regeneration potential. It might be concluded that the increase in hydrogen peroxide during initial stages of rhizogenesis and the induction of MnSODII are prerequisites for adventitious roots formation from hypocotyls of M. crystallinum, independently in the presence of anti- or prooxidant in the culture medium

    Pathways of ROS homeostasis regulation in "Mesembryanthemum crystallinum" L. calli exhibiting differences in rhizogenesis

    Get PDF
    A comparison of the hydrogen peroxide (H2O2) content, proline and betacyanin concentration and activities of some antioxidant enzymes (catalase, superoxide dismutase, guaiacol and ascorbate peroxidases) was made in Mesembryanthemum crystallinum L. calli differing in rhizogenic potential. Callus was induced from hypocotyls of 10-day-old seedlings on a medium containing 1 mg l−1 2,4-dichlorophenoxyacetic acid and 0.2 mg l−1 kinetin, which was either supplemented with 40 mM NaCl (CIM-NaCl medium) or did not contain any salt (CIM medium). The callus obtained on CIM-NaCl was rhizogenic, whereas the callus induced on the medium without salt was non-rhizogenic throughout the culture. The rhizogenic callus differed from the non-rhizogenic callus in lower betacyanin and H2O2 content, but the rhizogenic callus displayed a higher proline level. The activity of H2O2 scavenging enzymes, such as catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (POD), was markedly higher in the rhizogenic callus than in the non-rhizogenic callus, but the total activity of superoxide dismutase (SOD) was higher in the non-rhizogenic callus than in the rhizogenic callus. Aminotriazole (CAT inhibitor) and diethyldithiocarbamate (SOD inhibitor) were added solely to the CIM and CIM-NaCl media to manipulate the concentration of reactive oxygen species (ROS) in the cultured tissues. Both CAT and SOD inhibitors brought about an increase in H2O2 content in calli cultured on CIM-NaCl and the loss of rhizogenic potential. Conversely, the addition of inhibitors to the medium without salt led to a decrease in H2O2 content. This corresponded with a significant decrease in the endogenous concentration of betacyanins, but did not change the lack of rhizogenic ability

    The localization of NADPH oxidase and reactive oxygen species in in vitro-cultured Mesembryanthemum crystallinum L. hypocotyls discloses their differing roles in rhizogenesis

    Get PDF
    This work demonstrated how reactive oxygen species (ROS) are involved in the regulation of rhizogenesis from hypocotyls of Mesembryanthemum crystallinum L. cultured on a medium containing 1-naphthaleneacetic acid (NAA). The increase of NADPH oxidase activity was correlated with an increase of hydrogen peroxide (H2O2) content and induction of mitotic activity in vascular cylinder cells, leading to root formation from cultured hypocotyls. Diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, inhibited H2O2 production and blocked rhizogenesis. Ultrastructural studies revealed differences in H2O2 localization between the vascular cylinder cells and cortex parenchyma cells of cultured explants. We suggest that NADPH oxidase is responsible for H2O2 level regulation in vascular cylinder cells, while peroxidase (POD) participates in H2O2 level regulation in cortex cells. Blue formazan (NBT) precipitates indicating superoxide radical (O2 •−) accumulation were localized within the vascular cylinder cells during the early stages of rhizogenesis and at the tip of root primordia, as well as in the distal and middle parts of newly formed organs. 3,3′-diaminobenzidine (DAB) staining of H2O2 was more intense in vascular bundle cells and in cortex cells. In newly formed roots, H2O2 was localized in vascular tissue. Adding DPI to the medium led to a decrease in the intensity of NBT and DAB staining in cultured explants. Accumulation of O2 •− was then limited to epidermis cells, while H2O2 was accumulated only in vascular tissue. These results indicate that O2 •− is engaged in processes of rhizogenesis induction involving division of competent cells, while H2O2 is engaged in developmental processes mainly involving cell growth

    Morphohistological and flow cytometric analyses of somatic embryogenesis in Trifolium nigrescens Viv.

    Get PDF
    Microscopy and flow cytometry (FCM) were used to study somatic embryogenesis (SE) from zygotic embryos of Trifolium nigrescens Viv. to determine if there were any relationships between characteristics of somatic embryos (morphology, anatomy, genome size stability) and their regenerability. Embryoids were induced on Murashige and Skoog (MS) medium containing 4 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 2 mg l−1 N6-[2-isopentenyl]-adenine (2iP) either directly from hypocotyls or via an intervening callus, depending on the duration of culture. The morphology of somatic embryos varied from zygotic-like structures to abnormal structures including horn-shaped, polycotyledonary, and fused embryoids. The incidence of abnormalities was higher in callus cultures than in direct regeneration. Horn-shaped embryoids were the most frequent type of abnormal embryos. Only embryoids having zygotic-like morphology regenerated into plantlets. Histological observations revealed that the absence of shoot and root apical meristems along with parenchymatization of embryos were major obstacles to conversion of horn-shaped embryoids. The estimated 2C value for T. nigrescens was 0.9 pg. FCM analysis revealed differences in DNA content between embryoids induced via an intervening callus and those produced directly from explants. Individuals with species-specific as well as increased DNA content were detected among those zygotic-like embryos derived from callus, but all horn-shaped embryoids had increased genome sizes. The observed lack of differences in DNA content between zygotic-like and horn-shaped embryoids, from direct SE, indicated that these phenotypic abnormalities were of physiological origin. The mean DNA content of regenerants was species-specific, suggesting that only diploid embryoids were capable for regeneration into plantlets

    Analysis of noise inside bus of hybrid bus vehicles

    Get PDF
    The article presents the results of noise measurements during a control passage recorded in the interior of a bus with a serial hybrid drive. The noise was recorded in a continuous mode, and the course was adjusted for the pressure level and spectrogram in the field of time and frequency

    Field-induced slow magnetic relaxation in Mn9W6Mn_9W_6 cluster-based compound

    Get PDF
    Magnetic measurements of a three-dimensional (3D) molecular magnet built of Mn₉[W(CN)₈]₆ clusters have been carried out to study its static and dynamic properties. Measurements of ac susceptibility in the presence of static magnetic field revealed slow magnetic relaxations. It was found that for the 120 Hz wave frequency the optimal static field which maximizes the imaginary component of the ac susceptibility is about 500 Oe
    corecore