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Powder Sample Susceptibility for Single Ion Magnets
with S = 1, 3/2 with Rhombic Anisotropy
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In this paper, the general analysis of powder sample magnetic susceptibility of single ion magnets displaying
axial (D) and rhombic (E) local anisotropy, and characterized by the isotropic spectroscopic tensor g, is conducted.
The aim is to obtain exact expressions for the temperature dependence of magnetic susceptibility to extract both
anisotropy parameters D and E from the powder susceptibility data. Two cases are considered, with integer
(S = 1) and half-integer (S = 3/2) spin. In the former, the procedure based on the low-temperature behavior
of the susceptibility signal, which effectively reduces the number of fitting parameters, is proposed. By contrast,
in the case of the SIM with S = 3/2, it is explicitly demonstrated that the powder susceptibility depends on the
combined anisotropy parameter ∆ =

√
D2 + 3E2, precluding the full resolution of the axial and rhombic anisotropy

constants.
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1. Introduction

New materials are recently being sought for further
development of data storage density. One of the most
promising candidates are single ion magnets (SIM) that
theoretically could be used to encode binary information
in a single molecule. Concept of magnetic data storage
requires bistable remnant magnetization with an effective
energy barrier when switching between +z and −z states
of the magnetic moment [1]. The origin and size of an
energy barrier directly lie in magnetic anisotropy, a phe-
nomenon in which a molecule is easier to magnetize along
a certain crystallographic axis. Basically, the stronger is
the magnetic anisotropy, the higher is the energy barrier.

SIM’s are mononuclear complexes that possess suffi-
cient magnetic anisotropy and spin to retain magnetiza-
tion for a specific time in the low-temperature range [2].
They comprise of a single magnetic ion whose proper-
ties are modified by the surrounding ligand field causing
magnetic anisotropy. In the absence of external mag-
netic field, this phenomenon is called zero field splitting
(ZFS), which is present only when the spin ground state
of a molecule is greater than 1/2 and if the symmetry is
lower than cubic [3]. The relevant Hamiltonian Ĥ for an
isolated magnetic moment in an anisotropic environment
has the following form:

Ĥ = D

(
Ŝ2
z −

1

3
S(S + 1)

)
+ E

(
Ŝ2
x − Ŝ2

y

)
, (1)

where D and E are the axial and rhombic ZFS param-
eters respectively, S is the spin quantum number, and
Ŝ = (Ŝx, Ŝy, Ŝz) denotes the spin operator components.
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For the integer spin system, ZFS completely removes the
degeneracy of the S multiplet if the terms D and E are
non-zero. In the case of the half-integer spins, according
to the Kramers theorem [4], ZFS splits 2S+1 energy lev-
els into degenerate pairs with the same intrinsic angular
momentum |MS |. Degeneracy can be further removed
only by the magnetic field.

The development in the field of coordination com-
pounds displaying considerable magnetic anisotropies re-
quires appropriate theoretical models. The approach pre-
sented in [5] allows deriving the exact formulae for the
full magnetic susceptibility tensor with both ZFS param-
eters and an arbitrary spectroscopic tensor g for spin
models with S = 1, 3/2, 2, and 5/2. In this paper, the
special cases of powder sample susceptibility with an
isotropic tensor g for the integer S = 1 and the half-
integer S = 3/2 spins are discussed in detail. The aim
is to allow one to obtain both ZFS parameters from the
experimental powder data with simplified formulae and
reduced number of fitting parameters.

2. Results

The temperature dependence of the zero-field powder
sample magnetic susceptibility in the system with the
rhombic anisotropy is presented in this work. The prob-
lem is divided into two parts, one representing an integer
spin system (S = 1), and the other one, a half-integer
spin system (S = 3/2). The susceptibility of a powder
sample was obtained from the corresponding formulae
taken from [5] by appropriately averaging over the con-
tinuum of single crystal orientations yielding

χ̄(T ) =
1

3
Tr [χ̂(T )] =

1

3
(χxx(T ) + χyy(T ) + χzz(T )) . (2)
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2.1. The case of S = 1

If molar quantities are considered, the isotropic mag-
netic susceptibility χiso(T ) of an isolated magnetic mo-
ment reads

χiso(T ) =
NAµ

2
Bg

2S(S + 1)

3
β, (3)

where NA denotes the Avogadro constant, µB is the Bohr
magneton, g is the Landé factor, kB is the Boltzmann
constant, and β = 1/(kBT ) is the thermodynamic beta.
Assuming g = 2.0 and S = 1, χiso(T ) has a constant value
of about 1 cm3/(K mol). Let us introduce the parameter
λ = E/D which measures the ratio of the ZFS parame-
ters and is limited to be |λ| < 1

3 to ensure that z-axis is
always either the easy or the hard axis [2]. The powder
sample susceptibility with isotropic g = diag[g, g, g] then
reads

χ̄(T ) = χiso(T )F1 (βD, λ) , (4)
where

F1(u, λ) =
1

eu + 2 cosh(λu)

×
[

2

1− λ2
eu − cosh (λu)

u
+

1− 3λ2

1− λ2
sinh(λu)

λu

]
. (5)

The dimensionless quantity u is defined as u = βD. In
the limit of high temperature T → ∞ or isotropic envi-
ronment D → 0 (i.e., u→ 0) function F1(βD, λ) = 1, as
expected for an isotropic magnetic susceptibility χiso(T ).
Figures 1 and 2 show the dependence of the powder sam-
ple susceptibility for S = 1 and g = 2 for various values
of parameters D and λ. When D > 0, it is hard to dis-
tinguish between curves with the same D and different λ,
which effectively precludes the estimation of E. On the
other hand, when D < 0 and is sizable enough, all the
curves are well separated, as shown in Fig. 2.

Fig. 1. Temperature dependence of the powder sample
susceptibility χ̄T given in (4), for spin value S = 1 with
λ = 0.01 (black), λ = 0.1 (red), and λ = 0.3 (blue), and
the various positive axial anisotropy parameters D > 0.

Fig. 2. As in Fig. 1, but for the various negative axial
anisotropy parameters D < 0.

One can extract the leading term proportional to 1/u
as the temperature approaches zero (i.e., u→ ±∞). Two
distinct cases corresponding to the different sign of pa-
rameter D must be considered separately. For D < 0 the
asymptotic formula reads

F1(−β|D|, λ) ∝ 3|λ|+ 1

2|λ| (1 + |λ|)
1

β |D|
, (6)

while for D > 0

F1(βD, λ) ∝ 2

1− λ2
1

βD
. (7)

Combining Eq. (3) with either (6) or (7) indicates that
the limiting value of χ̄(T → 0) is a non-zero constant de-
pending on the ZFS parameter ratio λ. Thus, the prod-
uct T · χ̄(T ) displays a linear temperature dependence in
this limit. Let us define a quantity that can be estimated
directly from the powder sample susceptibility data

A =
∂ (T · χ̄(T ))

∂T

∣∣∣∣
T=0

, (8)

which is a slope of the T · χ̄(T ) curve in the zero temper-
ature limit. With this new variable, the ZFS parameter
ratio λ can be expressed in terms of D, A, and g:

|λ| = 1

2

[
NAµ

2
Bg

2

|D||A|
− 1

+

√(
NAµ2

Bg
2

|D|A
− 1

)2

+
4

3

NAµ2
Bg

2

|D|A

 (9)

for D < 0, and

|λ| =
√

1− 4

3

NAµ2
Bg

2

DA
(10)

for D > 0. Note that in the above expressions A is de-
fined in units of cm3/mol. This procedure reduces the
number of fitting parameters of function T · χ̄(T ) to two,
i.e., the axial parameter D and the spectroscopic fac-
tor g, provided that one has estimated the slope A. Con-
sequently, the rhombic parameter E can be calculated
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TABLE I

The upper temperature limit of T · χ̄ (T ) linear approxi-
mation applicability for various D and λ

D [K] λ = 0.01 λ = 0.1 λ = 0.3

−10 0.05 K 0.5 K 1.5 K
−50 0.2 K 2 K 6 K
−100 0.4 K 4 K 12 K
> 0 1 K 5 K 10 K

instantly as E = λD. Table I shows the upper temper-
ature limit at which the above linear approximation is
still valid for certain values of parameters λ and D. For
D < 0, the larger magnetic anisotropy is (and thus D
and E), the higher is the temperature at which one can
use (9) to reduce the number of fitting parameters. In
the case of D > 0, the upper temperature limit changes
only with λ and has no substantial dependence on D.

We have made an attempt to check the above proce-
dure out on the real data. We considered two transition-
metal complexes [MII(N3N)Li(THF)] (M=Co, Ni) [6].
The transition metal ions CoII and NiII in these com-
pounds carry the spin of S = 3/2 and S = 1, respectively.
The constraint fitting of the Ni congener according to
the above procedure yielded only a slightly lower root
mean square deviation of 1.7× 10−2 cm3/(K mol) in the
D < 0 case than in the D > 0 case. The low-temperature
slope of the T · χ̄(T ) curve was found to amount to
A = 0.072(2) cm3/mol. The linear low-temperature ap-
proximation together with the best fit curve are shown in
Fig. 3. The best fit parameters amount to g = 1.979(3),
D = −18.5(3) cm−1, and |E| = 7(2) cm−1. While the
value of E compares well with the value of 6(1) cm−1 re-
ported in [6], that of the D parameter is considerably un-
derestimated (in [6] D = −26(1) cm−1 is reported). At
the same time the unconstrained fitting with all three pa-
rameters g, D, and E relaxed, gives a much better root
mean square deviation of 8.7× 10−3 cm3/(K mol) and
the parameter set, g = 1.987(2), D = −24.2(7) cm−1,
|E| = 5.7(3) cm−1, in a better agreement with the values
reported in [6] and obtained by the simultaneous fitting
of the susceptibility and magnetization data. This im-
plies that the proposed procedure might not be a robust
one, depending crucially on the precise determination of
the slope A, which can be thwarted by the presence of
the intermolecular interactions.

2.2. The case of S = 3/2

As mentioned in the first section, crystal field (elec-
trostatic interactions with neighboring valence electrons)
cannot fully remove the degeneracy for systems with the
half integer spin. The resulting Kramers doublets can be
further split only by applying an external magnetic field.
As a consequence, even in the limit of zero magnetic field
the susceptibility tensor depends on the direction of the
sampling field as demonstrated in [5]. It was not the
case for S = 1, and it is actually a characteristic fea-
ture for half-integer spins. However, by averaging over

Fig. 3. The best-fit curves for Ni and Co compounds
reported in [6] (black). The blue line shows the low-
temperature linear extrapolation of the powder suscep-
tibility data for the Ni congener, employed in the pro-
posed procedure of the constrained fitting.

Fig. 4. Temperature dependence of the powder sample
susceptibility T · χ̄(T ) given in (11), for the spin value
S = 3/2 with ∆ = 10 K (black), ∆ = 50 K (red), and
∆ = 100 K (blue).

all possible directions of the sampling field one arrives
at the common result comprising the arithmetic mean of
the susceptibility values taken for the three orthogonal
sampling field directions as in (2). The final formula for
the powder sample susceptibility of the S = 3/2 system
reads

χ̄(T ) = χiso(T )F3/2(β∆) (11)
with ∆ =

√
D2 + 3E2, χiso(T ) is a constant with value

of about 1.875 cm3/(K mol) (g = 2.0) according to (3),
and

F3/2(β∆) =
1

5

(
3 + 2

tanh(β∆)

β∆

)
. (12)
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In the high-temperature limit F3/2(β∆) = 1 and in the
low-temperature limit F3/2(β∆) = 3/5, as shown in
Fig. 4, above equation may look much simpler compared
to the case of S = 1. However, since ∆ combines both
ZFS parameters, it is impossible to unambiguously ex-
tract both of them from a powder experiment. In fact,
only ∆ is attainable which gives information about the
size of the magnetic anisotropy but without the distinc-
tion between the axial and rhombic ZFS parameters. In
Fig. 3 the best-fit curve is shown for the Co congener.
The resulting parameter ∆ amounts to 23.9(7) cm−1,
which is lower than the value of 28(1) cm−1 implied in [6].
This indicates that fitting of the powder susceptibility
alone may not be fully competitive to the simultaneous
analysis of the susceptibility and magnetization data.

3. Conclusions

Exact formulae for the powder sample magnetic sus-
ceptibility have been presented and discussed for SIM
with integer (S = 1) and half-integer (S = 3/2) spins.
In the case of S = 1, it was shown that both ZFS param-
eters, D and E, might be distinctly obtained for D < 0
when magnetic anisotropy is large enough. Furthermore,
the procedure, albeit not always robust, based on the lin-
ear behavior of the T χ̄(T ) in the low temperature limit
and reduced number of fitting parameters, was proposed

with the discussion of conditions of applicability of such
an approach. A similar approach could not be done for
S = 3/2 because T · χ̄(T ) depends on the combination
of ZFS parameters that does not allow for extracting
the exact values of both D and E anisotropy constants
simultaneously.
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