54 research outputs found

    miRSel: automated extraction of associations between microRNAs and genes from the biomedical literature.

    Get PDF
    Background MicroRNAs have been discovered as important regulators of gene expression. To identify the target genes of microRNAs, several databases and prediction algorithms have been developed. Only few experimentally confirmed microRNA targets are available in databases. Many of the microRNA targets stored in databases were derived from large-scale experiments that are considered not very reliable. We propose to use text mining of publication abstracts for extracting microRNA-gene associations including microRNA-target relations to complement current repositories. Results The microRNA-gene association database miRSel combines text-mining results with existing databases and computational predictions. Text mining enables the reliable extraction of microRNA, gene and protein occurrences as well as their relationships from texts. Thereby, we increased the number of human, mouse and rat miRNA-gene associations by at least three-fold as compared to e.g. TarBase, a resource for miRNA-gene associations. Conclusions Our database miRSel offers the currently largest collection of literature derived miRNA-gene associations. Comprehensive collections of miRNA-gene associations are important for the development of miRNA target prediction tools and the analysis of regulatory networks. miRSel is updated daily and can be queried using a web-based interface via microRNA identifiers, gene and protein names, PubMed queries as well as gene ontology (GO) terms. miRSel is freely available online at http://services.bio.ifi.lmu.de/mirse

    Normalization and Gene p-Value Estimation: Issues in Microarray Data Processing

    Get PDF
    Introduction: Numerous methods exist for basic processing, e.g. normalization, of microarray gene expression data. These methods have an important effect on the final analysis outcome. Therefore, it is crucial to select methods appropriate for a given dataset in order to assure the validity and reliability of expression data analysis. Furthermore, biological interpretation requires expression values for genes, which are often represented by several spots or probe sets on a microarray. How to best integrate spot/probe set values into gene values has so far been a somewhat neglecte

    Detection of network motifs using three-way ANOVA

    Get PDF
    Motivation Gene regulatory networks (GRN) can be determined via various experimental techniques, and also by computational methods, which infer networks from gene expression data. However, these techniques treat interactions separately such that interdependencies of interactions forming meaningful subnetworks are typically not considered. Methods For the investigation of network properties and for the classification of different (sub-) networks based on gene expression data, we consider biological network motifs consisting of three genes and up to three interactions, e.g. the cascade chain (CSC), feed-forward loop (FFL), and dense-overlapping regulon (DOR). We examine several conventional methods for the inference of network motifs, which typically consider each interaction individually. In addition, we propose a new method based on three-way ANOVA (ANalysis Of VAriance) (3WA) that analyzes entire subnetworks at once. To demonstrate the advantages of such a more holistic perspective, we compare the ability of 3WA and other methods to detect and categorize network motifs on large real and artificial datasets. Results We find that conventional methods perform much better on artificial data (AUC up to 80%), than on real E. coli expression datasets (AUC 50% corresponding to random guessing). To explain this observation, we examine several important properties that differ between datasets and analyze predicted motifs in detail. We find that in case of real networks our new 3WA method outperforms (AUC 70% in E. coli) previous methods by exploiting the interdependencies in the full motif structure. Because of important differences between current artificial datasets and real measurements, the construction and testing of motif detection methods should focus on real data

    Petri Nets with Fuzzy Logic (PNFL): Reverse Engineering and Parametrization

    Get PDF
    Background: The recent DREAM4 blind assessment provided a particularly realistic and challenging setting for network reverse engineering methods. The in silico part of DREAM4 solicited the inference of cycle-rich gene regulatory networks from heterogeneous, noisy expression data including time courses as well as knockout, knockdown and multifactorial perturbations. Methodology and Principal Findings: We inferred and parametrized simulation models based on Petri Nets with Fuzzy Logic (PNFL). This completely automated approach correctly reconstructed networks with cycles as well as oscillating network motifs. PNFL was evaluated as the best performer on DREAM4 in silico networks of size 10 with an area under the precision-recall curve (AUPR) of 81%. Besides topology, we inferred a range of additional mechanistic details with good reliability, e.g. distinguishing activation from inhibition as well as dependent from independent regulation. Our models also performed well on new experimental conditions such as double knockout mutations that were not included in the provided datasets. Conclusions: The inference of biological networks substantially benefits from methods that are expressive enough to deal with diverse datasets in a unified way. At the same time, overly complex approaches could generate multiple different models that explain the data equally well. PNFL appears to strike the balance between expressive power and complexity. This also applies to the intuitive representation of PNFL models combining a straightforward graphical notation with colloquial fuzzy parameters

    Executable Petri net models for the analysis of metabolic pathways

    No full text
    corecore