21 research outputs found

    Comprehensive Nutritional and Dietary Intervention for Autism Spectrum Disorder—A Randomized, Controlled 12-Month Trial

    No full text
    This study involved a randomized, controlled, single-blind 12-month treatment study of a comprehensive nutritional and dietary intervention. Participants were 67 children and adults with autism spectrum disorder (ASD) ages 3–58 years from Arizona and 50 non-sibling neurotypical controls of similar age and gender. Treatment began with a special vitamin/mineral supplement, and additional treatments were added sequentially, including essential fatty acids, Epsom salt baths, carnitine, digestive enzymes, and a healthy gluten-free, casein-free, soy-free (HGCSF) diet. There was a significant improvement in nonverbal intellectual ability in the treatment group compared to the non-treatment group (+6.7 ± 11 IQ points vs. −0.6 ± 11 IQ points, p = 0.009) based on a blinded clinical assessment. Based on semi-blinded assessment, the treatment group, compared to the non-treatment group, had significantly greater improvement in autism symptoms and developmental age. The treatment group had significantly greater increases in EPA, DHA, carnitine, and vitamins A, B2, B5, B6, B12, folic acid, and Coenzyme Q10. The positive results of this study suggest that a comprehensive nutritional and dietary intervention is effective at improving nutritional status, non-verbal IQ, autism symptoms, and other symptoms in most individuals with ASD. Parents reported that the vitamin/mineral supplements, essential fatty acids, and HGCSF diet were the most beneficial

    Lupus pathogenesis and autoimmunity are exacerbated by high fat diet-induced obesity in MRL/lpr mice

    No full text
    Objective SLE is an autoimmune disease characterised by persistent inflammation and autoantibody production. Genetic predisposition and environmental factors such as a high-fat diet (HFD) may contribute to lupus development. However, the immune cell profile and gender difference in response to HFD in lupus have not been reported. Here we investigated the impact of HFD on lupus pathogenesis and autoimmunity using lupus-prone mice.Methods Thirty male and 30 female MRL/lymphoproliferation (lpr) mice were fed with regular diet (RD) or HFD. Body weights were recorded weekly. SLE progression was monitored by skin lesion, urine protein, titres of antidouble-strand DNA (dsDNA) and ANA. At week 14, kidney and skin tissue sections were stained with H&E and periodic acid–Schiff to detect histological kidney index and skin score. Splenocytes were identified by immunofluorescence staining and flow cytometry.Results HFD significantly increased body weight and lipid levels compared with RD (p<0.01). Skin lesions were observed in 55.6% of the HFD group compared with 11.1% of the RD group, with greater histopathological skin scores in the female HFD group (p<0.01). Although both male and female mice had higher serum IgG in the HFD group than in the RD group, only the male HFD group showed an increased trend in anti-dsDNA Ab and ANA titres. Kidney pathological changes in the HFD group were more severe in male mice than in female mice (p<0.05), detected by proteinuria, kidney index and glomerular cell proliferation. Significant increases of germinal centre B cells and T follicular helper cells were observed in the spleens of HFD mice (p<0.05).Conclusion HFD induced an accelerated and exacerbated lupus development and autoimmunity in MRL/lpr mice. Our results parallel many known clinical lupus phenotypes and sexual dimorphism in which male patients are likelier to have a severe disease (nephritis) than female lupus patients who may have a broader range of lupus symptoms

    Significant Association of Urinary Toxic Metals and Autism-Related Symptoms—A Nonlinear Statistical Analysis with Cross Validation

    No full text
    <div><p>Introduction</p><p>A number of previous studies examined a possible association of toxic metals and autism, and over half of those studies suggest that toxic metal levels are different in individuals with Autism Spectrum Disorders (ASD). Additionally, several studies found that those levels correlate with the severity of ASD.</p><p>Methods</p><p>In order to further investigate these points, this paper performs the most detailed statistical analysis to date of a data set in this field. First morning urine samples were collected from 67 children and adults with ASD and 50 neurotypical controls of similar age and gender. The samples were analyzed to determine the levels of 10 urinary toxic metals (UTM). Autism-related symptoms were assessed with eleven behavioral measures. Statistical analysis was used to distinguish participants on the ASD spectrum and neurotypical participants based upon the UTM data alone. The analysis also included examining the association of autism severity with toxic metal excretion data using linear and nonlinear analysis. “Leave-one-out” cross-validation was used to ensure statistical independence of results.</p><p>Results and Discussion</p><p>Average excretion levels of several toxic metals (lead, tin, thallium, antimony) were significantly higher in the ASD group. However, ASD classification using univariate statistics proved difficult due to large variability, but nonlinear multivariate statistical analysis significantly improved ASD classification with Type I/II errors of 15% and 18%, respectively. These results clearly indicate that the urinary toxic metal excretion profiles of participants in the ASD group were significantly different from those of the neurotypical participants. Similarly, nonlinear methods determined a significantly stronger association between the behavioral measures and toxic metal excretion. The association was strongest for the Aberrant Behavior Checklist (including subscales on Irritability, Stereotypy, Hyperactivity, and Inappropriate Speech), but significant associations were found for UTM with all eleven autism-related assessments with cross-validation <i>R</i><sup>2</sup> values ranging from 0.12–0.48.</p></div
    corecore