5 research outputs found

    IJTC2008-71163 PROTOTYPE DESIGN OF A HIGH-SPEED VISCOUS AIR SPINDLE

    No full text
    ABSTRACT In this paper an innovative air driven spindle for micro cutting applications is presented. The spindle uses a viscous traction concept which has the advantage that the viscous traction forces can act directly on the cylindrical part of the tool, which makes the tool-holder redundant. Furthermore, the tool can be actuated in the axial direction within the housing. In this paper the concept of the viscous turbine, a design of a prototype spindle along with the traction and load-capacity of the spindle are discussed

    Simple heterodyne laser interferometer with subnanometer periodic errors

    No full text
    We describe a simple heterodyne laser interferometer that has subnanometer periodic errors and is applicable to industrial fields. Two spatially separated beams can reduce the periodic errors, and the use of a right-angle prism makes the optical configuration much simpler than previous interferometers. Moreover, the optical resolution can be enhanced by a factor of 2, because the phase change direction is opposite between reference and measurement signals. Experiments have demonstrated the periodic errors are less than 0.15 nm owing to the frequency mixing of the optical source. The improvements for reducing the frequency mixing of the optical system are also discussed.Precision and Microsystems EngineeringMechanical, Maritime and Materials Engineerin

    High resolution heterodyne interferometer without detectable periodic nonlinearity

    No full text
    A high resolution heterodyne laser interferometer without periodic nonlinearity for linear displacement measurements is described. It uses two spatially separated beams with an offset frequency and an interferometer configuration which has no mixed states to prevent polarization mixing. In this research, a simple interferometer configuration for both retroreflector and plane mirror targets which are both applicable to industrial applications was developed. Experimental results show there is no detectable periodic nonlinearity for both of the retro-reflector interferometer and plane mirror interferometer to the noise level of 20 pm. Additionally, the optical configuration has the benefit of doubling the measurement resolution when compared to its respective traditional counterparts. Because of non-symmetry in the plane mirror interferometer, a differential plane mirror interferometer to reduce the thermal error is also discussed.Precision and Microsystems EngineeringMechanical, Maritime and Materials Engineerin
    corecore