135 research outputs found

    Detection of Structure in Infrared-Dark Clouds with Spitzer: Characterizing Star Formation in the Molecular Ring

    Get PDF
    We have conducted a survey of a sample of infrared-dark clouds (IRDCs) with the Spitzer Space Telescope in order to explore their mass distribution. We present a method for tracing mass using dust absorption against the bright Galactic background at 8 microns. The IRDCs in this sample are comprised of tens of clumps, ranging in sizes from 0.02 to 0.3 pc in diameter and masses from 0.5 to a few 10 Msun, the broadest dynamic range in any clump mass spectrum study to date. Structure with this range in scales confirms that IRDCs are the the precursors to stellar clusters in an early phase of fragmentation. Young stars are distributed in the vicinity of the IRDCs, but the clumps are typically not associated with stars and appear pre-stellar in nature. We find an IRDC clump mass spectrum with a slope of 1.76 +/- 0.05 for masses from 30 to 3000 Msun. This slope is consistent with numerous studies, culled from a variety of observational techniques, of massive star formation regions and is close to the mass function of Galactic stellar clusters and star clusters in other galaxies. We assert that the shape of the mass function is an intrinsic and universal feature of massive star formation regions, that are the birth sites of stellar clusters. As these clouds evolve and their constituent clumps fragment, the mass spectrum will steepen and eventually assume the form of the core mass function that is observed locally.Comment: Accepted to ApJ. 37 pages, 24 figures. Full-resolution versions of the figures are available at http://www.astro.lsa.umich.edu/~seragan/ftp/irdc_figs

    Filamentary Accretion Flows in the Embedded Serpens South Protocluster

    Full text link
    One puzzle in understanding how stars form in clusters is the source of mass -- is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of ~30Msol/Myr (inferred from the N2H+ velocity gradient along the filament), and radially contracting onto the filament at ~130Msol/Myr (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.Comment: 19 pages, 8 figures, 2 tables; accepted for publication in Ap

    The Highly Dynamic Behavior of the Innermost Dust and Gas in the Transition Disk Variable LRLL 31

    Full text link
    We describe extensive synoptic multi-wavelength observations of the transition disk LRLL 31 in the young cluster IC 348. We combined four epochs of IRS spectra, nine epochs of MIPS photometry, seven epochs of cold-mission IRAC photometry and 36 epochs of warm mission IRAC photometry along with multi-epoch near-infrared spectra, optical spectra and polarimetry to explore the nature of the rapid variability of this object. We find that the inner disk, as traced by the 2-5micron excess stays at the dust sublimation radius while the strength of the excess changes by a factor of 8 on weekly timescales, and the 3.6 and 4.5micron photometry shows a drop of 0.35 magnitudes in one week followed by a slow 0.5 magnitude increase over the next three weeks. The accretion rate, as measured by PaBeta and BrGamma emission lines, varies by a factor of five with evidence for a correlation between the accretion rate and the infrared excess. While the gas and dust in the inner disk are fluctuating the central star stays relatively static. Our observations allow us to put constraints on the physical mechanism responsible for the variability. The variabile accretion, and wind, are unlikely to be causes of the variability, but both are effects of the same physical process that disturbs the disk. The lack of periodicity in our infrared monitoring indicates that it is unlikely that there is a companion within ~0.4 AU that is perturbing the disk. The most likely explanation is either a companion beyond ~0.4 AU or a dynamic interface between the stellar magnetic field and the disk leading to a variable scale height and/or warping of the inner disk.Comment: Accepted to ApJ. 10 pages of text, plus 11 tables and 13 figures at the en

    Spitzer Imaging of the Nearby Rich Young Cluster, Cep OB3b

    Full text link
    We map the full extent of a rich massive young cluster in the Cep OB3b association with the IRAC and MIPS instruments aboard the {\it Spitzer} Space Telescope and the ACIS instrument aboard the Chandra\it{Chandra} X-Ray Observatory. At 700 pc, it is revealed to be the second nearest large (>1000>1000 member), young (<5< 5 Myr) cluster known. In contrast to the nearest large cluster, the Orion Nebula Cluster, Cep OB3b is only lightly obscured and is mostly located in a large cavity carved out of the surrounding molecular cloud. Our infrared and X-ray datasets, as well as visible photometry from the literature, are used to take a census of the young stars in Cep OB3b. We find that the young stars within the cluster are concentrated in two sub-clusters; an eastern sub-cluster, near the Cep B molecular clump, and a western sub-cluster, near the Cep F molecular clump. Using our census of young stars, we examine the fraction of young stars with infrared excesses indicative of circumstellar disks. We create a map of the disk fraction throughout the cluster and find that it is spatially variable. Due to these spatial variations, the two sub-clusters exhibit substantially different average disk fractions from each other: 3232% \pm 4% and 5050% \pm 6%. We discuss whether the discrepant disk fractions are due to the photodestruction of disks by the high mass members of the cluster or whether they result from differences in the ages of the sub-clusters. We conclude that the discrepant disk fractions are most likely due to differences in the ages.Comment: 48 Pages, 12 figures, 6 table
    • …
    corecore