859 research outputs found

    Distribution, diversity and evolution of endogenous retroviruses in perissodactyl genomes

    Get PDF
    The evolution of mammalian genomes has been shaped by interactions with endogenous retroviruses (ERVs). In this study, we investigated the distribution and diversity of ERVs in the mammalian order Perissodactyla, with a view to understanding their impact on the evolution of modern equids (family Equidae). We characterize the major ERV lineages in the horse genome in terms of their genomic distribution, ancestral genome organization and time of activity. Our results show that subsequent to their ancestral divergence from rhinos and tapirs, equids acquired four novel ERV lineages. We show that two of these proliferated extensively in the lineage leading to modern horses, and one contains loci that are actively transcribed in specific tissues. In addition, we show that the white rhinoceros has resisted germline colonisation by retroviruses for over 54 million years - longer than any other extant mammalian species. The map of equine ERVs that we provide here will be of great utility to future studies aiming to investigate the potential functional roles of equine ERVs, and their impact on equine evolution

    Co-option of an endogenous retrovirus envelope for host defense in hominid ancestors

    Get PDF
    Endogenous retroviral sequences provide a molecular fossil record of ancient infections whose analysis might illuminate mechanisms of viral extinction. A close relative of gammaretroviruses, HERV-T, circulated in primates for ~25 million years (MY) before apparent extinction within the past ~8 MY. Construction of a near-complete catalog of HERV-T fossils in primate genomes allowed us to estimate a ~32 MY old ancestral sequence and reconstruct a functional envelope protein (ancHTenv) that could support infection of a pseudotyped modern gammaretrovirus. Using ancHTenv, we identify monocarboxylate transporter-1 (MCT-1) as a receptor used by HERV-T for attachment and infection. A single HERV-T provirus in hominid genomes includes an env gene (hsaHTenv) that has been uniquely preserved. This apparently exapted HERV-T env could not support virion infection but could block ancHTenv mediated infection, by causing MCT-1 depletion from cell surfaces. Thus, hsaHTenv may have contributed to HERV-T extinction, and could also potentially regulate cellular metabolism

    Investigating the Impact of the Church Covenant on the Revitalization of a Declining Church

    Get PDF
    The local church finds itself in crisis and the decline in attendance and membership in churches is undeniable. The thesis project establishes that there is more to being a Christian than identifying as one. To reverse the declining trajectory, churches must understand what a church is, what a church member is, and the importance of regenerate church membership. The premise of this project thesis was that if the pastor preached on the church’s historic covenant, it would serve as a starting point for the revitalization of the declining church by affecting the member’s understanding of the church and their role in it. The project drew inspiration from the Bible, church history, and pre-existing literature to develop the conceptual framework. The resulting project was to create a desire in the congregation to return to a biblical ideal, create a new way of thinking, and spur internal change in the participants. The project thesis aims to answer the question, “Does knowing and understanding the covenant of Hillcrest Baptist Church make a difference in our efforts to revitalize a declining church?” The project measured any potential change through pre-study and post-study questionnaires. The ultimate result of this project thesis was that the participants expected no change following the study’s conclusion. The project thesis came to an unintended outcome, but it lays the foundations for other churches that could potentially follow or develop the study further

    Larger mammalian body size leads to lower retroviral activity

    Get PDF
    Retroviruses have been infecting mammals for at least 100 million years, leaving descendants in host genomes known as endogenous retroviruses (ERVs). The abundance of ERVs is partly determined by their mode of replication, but it has also been suggested that host life history traits could enhance or suppress their activity. We show that larger bodied species have lower levels of ERV activity by reconstructing the rate of ERV integration across 38 mammalian species. Body size explains 37% of the variance in ERV integration rate over the last 10 million years, controlling for the effect of confounding due to other life history traits. Furthermore, 68% of the variance in the mean age of ERVs per genome can also be explained by body size. These results indicate that body size limits the number of recently replicating ERVs due to their detrimental effects on their host. To comprehend the possible mechanistic links between body size and ERV integration we built a mathematical model, which shows that ERV abundance is favored by lower body size and higher horizontal transmission rates. We argue that because retroviral integration is tumorigenic, the negative correlation between body size and ERV numbers results from the necessity to reduce the risk of cancer, under the assumption that this risk scales positively with body size. Our model also fits the empirical observation that the lifetime risk of cancer is relatively invariant among mammals regardless of their body size, known as Peto's paradox, and indicates that larger bodied mammals may have evolved mechanisms to limit ERV activity
    • …
    corecore