1,396 research outputs found

    Four Decades of Space-Borne Radio Sounding

    Get PDF
    A review is given of the 38 rocket, satellite, and planetary payloads dedicated to ionospheric/magnetospheric radio sounding since 1961. Between 1961 and 1995, eleven sounding-rocket payloads from four countries evolved from proof-of-concept flights to sophisticated instruments. Some involved dual payloads, with the sounder transmitter on one and the sounder receiver on the other. The rocket sounders addressed specific space-plasma-wave questions, and provided improved measurements of ionospheric electron-density (N(sub e)) field-aligned irregularities (FAI). Four countries launched 12 ionospheric topside-sounder satellites between 1962 and 1994, and an ionospheric sounder was placed on the Mir Space Station in 1998. Eleven magnetospheric radio sounders, most of the relaxation type, were launched from 1977 to 2000. The relaxation sounders used low-power transmitters, designed to stimulate plasma resonances for accurate local Ne determinations. The latest magnetospheric sounder designed for remote sensing incorporated long antennas and digital signal processing techniques to overcome the challenges posed by low Ne values and large propagation distances. Three radio sounders from three countries were included on payloads to extraterrestrial destinations from 1990 to 2003. The scientific accomplishments of space-borne radio sounders included (1) a wealth of global N(sub e) information on the topside ionosphere and magnetosphere, based on vertical and magnetic-field-aligned N(sub e) profiles; (2) accurate in-situ N(sub e) values, even under low-density conditions; and (3) fundamental advances in our understanding of the excitation and propagation of plasma waves, which have even led to the prediction of a new plasma-wave mode

    A New Inversion Routine to Produce Vertical Electron-Density Profiles from Ionospheric Topside-Sounder Data

    Get PDF
    Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into vertical electron-density profiles Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) profiles produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height profile fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined profile shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global profile to keep the monotone nature of the profile, which also ensures better smoothness in the final profile than in Jackson s program. The new code uses the complete refractive index expression for a cold collisionless plasma and can accommodate the IGRF, T96, and other geomagnetic field models

    Landing characteristics in waves of three dynamic models of flying boats

    Get PDF
    Powered models of three different flying boats were landed in oncoming waves of various heights and lengths. The effects of varying the trim at landing, the deceleration after landing, and the size of the waves were determined. Data are presented on the motions and accelerations obtained during landings in rough water

    Global convergence of a primal-dual interior-point method for nonlinear programming

    Get PDF
    Many recent convergence results obtained for primal-dual interior-point methods for nonlinear programming, use assumptions of the boundedness of generated iterates. In this paper we replace such assumptions by new assumptions on the NLP problem, develop a modification of a primal-dual interior-point method implemented in software package LOQO and analyze convergence of the new method from any initial guess

    New Data on the Topside Electron Density Distribution

    Get PDF
    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from hmF2 to approx. 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms and most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350,000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The automatic topside ionogram scaler with true height algorithm TOPIST software developed for this task is successfully scaling approx.70 % of the ionograms. An 'editing process' is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle. The ISIS data restoration efforts are supported through NASA's Applied Systems and Information Research Program

    Enhancing the ISIS-I Topside Digital Ionogram Database

    Get PDF
    Selected original analog telemetry tapes from three of the topside-sounder satellites of theInternational Satellites for Ionospheric Studies (ISIS) program, namely Alouette 2, ISIS I, and ISIS II, wereused in an earlier project to produce more than million digital topside ionograms; the resulting digitaltopside ionograms from ISIS II were used to produce more than 86,000 globally distributed vertical topsideionospheric electron density profiles Ne(h) that cover a time span of more than a solar cycle. These Ne(h) wereproduced using the Topside Ionogram Scaler with True height algorithm auto-scaling software. Beforeattempting to automatically process Alouette-2 or ISIS-I ionograms, a data-enhancement project wasinitiated so as to increase the number of ionograms suitable for manual scaling and to increase theauto-processing success rate. These enhancements were mainly to correct problems that often occurredduring the analog-to-digital conversion of the original telemetry tapes. Here we illustrate the improvementsmade to the ISIS-I digital topside ionograms and compare Ne values at the satellite altitude and Ne(h)profiles, based on the manual scaling of selected ionograms, to both the auto-scaled values and thepredictions of the International Reference Ionosphere 2016 model. The results indicate the need to improvethe available auto-processing software for the new ISIS-I digital ionograms and that International ReferenceIonosphere 2016 predicts midlatitude winter topside Ne values that are too high in the late morning andat noon but too low in the early morning

    Status of and Scientific Results from the ISIS-I Topside Digital Ionogram Data Enhancement Project

    Get PDF
    Selected original analog telemetry tapes from three of the topside-sounder satellites of the International Satellites for Ionospheric Studies (ISIS) program, namely Alouette 2, ISIS I, and ISIS II, were used in an earlier project to produce more than million digital topside ionograms; the resulting digital topside ionograms from ISIS II were used to produce morethan 86,000 globally-distributed vertical topside ionospheric electron density profiles Ne(h)that cover a time span of more than a solar cycle. These Ne(h) were produced using the TOPIST auto-scaling software. Before attempting to automatically process Alouette-2 orISIS-I ionograms a data-enhancement project was initiated so as to increase the auto processing success rate. These enhancements were mainly to correct problems that often occurred during the analog-to-digital conversion of the original telemetry tapes. Here we present the status of, and results from, this ongoing enhancement effort

    Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    Get PDF
    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDA Web). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available

    Supracervical Robotic-Assisted Laparoscopic Sacrocolpopexy for Pelvic Organ Prolapse

    Get PDF
    Supracervical robotic-assisted laparoscopic sacrocolpopexy was found to be an effective repair of apical vaginal defects in patients with pelvic organ prolapse who had not undergone previous hysterectomy

    Altitude Variation of the Plasmapause Signature in the Main Ionospheric Trough

    Get PDF
    The projection of the plasmapause magnetic-field lines to low altitudes, where the light-ion chemistry is dominated by O(+), tends to occur near the minimum electron density in the main (midlatitude) electron density trough at night. With increasing attitude in the trough, where H(+) emerges as the dominant iota on the low-latitude boundary, we have found cases where the plasmapause field lines are located on the sharp low-Latitude side of the trough as expected if this topside ionosphere H(+) distribution varies in step with the plasmapause gradient in the distant plasmasphere. These conclusions are based on near-equatorial crossings of the plasmapause (corresponding to the steep gradient in the dominant species H(+) by the Explorer-45 satellite as determined from electric-field measurements by Maynard and Cauffman in the early 1970s and ISIS-2 ionospheric topside-sounder measurements. The former data have now been converted to digital form and made available at http://nssdcftp.gsfc.nasa.gov. The latter provide samples of nearly coincident observations of ionospheric main trough crossings near the same magnetic-field lines of the Explorer 45-determined equatorial plasmapause. The ISIS-2 vertical electron density profiles are used to infer where the F-region transitions from an O(+) to a H(+) dominated plasma through the main trough boundaries
    • …
    corecore