391 research outputs found
A Nonlinear Modal Aeroelastic Solver for FUN3D
A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime
Computational Aeroelastic Analysis of the Ares Launch Vehicle During Ascent
This paper presents the static and dynamic computational aeroelastic (CAE) analyses of the Ares crew launch vehicle (CLV) during atmospheric ascent. The influence of launch vehicle flexibility on the static aerodynamic loading and integrated aerodynamic force and moment coefficients is discussed. The ultimate purpose of this analysis is to assess the aeroelastic stability of the launch vehicle along the ascent trajectory. A comparison of analysis results for several versions of the Ares CLV will be made. Flexible static and dynamic analyses based on rigid computational fluid dynamic (CFD) data are compared with a fully coupled aeroelastic time marching CFD analysis of the launch vehicle
A Proposed Role of Aeroelasticity in NASA's New Exploration Vision
On 14 January 2004, NASA received a mandate to return astronauts to the Moon, evolve a sustained presence there, then head out into the solar system to Mars and perhaps beyond. This new space exploration initiative directs NASA to develop human and robotic technologies that can deliver payloads larger than Apollo to the Moon, to Mars, and bring astronauts and samples safely back to Earth at costs much lower than Apollo. These challenges require creative aerospace systems. On proposed technology for safely delivering payloads to the surface of Mars and returning samples to Earth involves deployed flexible and inflatable decelerators for atmospheric entry. Because inflatable decelerators provide the entry vehicle more drag surface area at smaller mass than traditional ablative devices, this class of decelerators can potentially accomodate larger mass payloads. The flexibility of these lightweight aeroshells can pose both vehicle and aeroelastic stability problems if not properly designed for the expected flight regimes. Computational tools need to be developed for modelling the large and nonlinear deformations of these highly flexible structures. Unlike wind tunnel testing, an integrated and efficient aeroelastic analysis tool can explore the entire flight environment. This paper will provide some background on flexible deployable decelerators, survey the current state of technology and outline the proposed development of an aeroelastic analysis and capability
Quantitative Chemically-Specific Coherent Diffractive Imaging of Buried Interfaces using a Tabletop EUV Nanoscope
Characterizing buried layers and interfaces is critical for a host of
applications in nanoscience and nano-manufacturing. Here we demonstrate
non-invasive, non-destructive imaging of buried interfaces using a tabletop,
extreme ultraviolet (EUV), coherent diffractive imaging (CDI) nanoscope. Copper
nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is
opaque to visible light and thick enough that neither optical microscopy nor
atomic force microscopy can image the buried interfaces. Short wavelength (29
nm) high harmonic light can penetrate the aluminum layer, yielding
high-contrast images of the buried structures. Moreover, differences in the
absolute reflectivity of the interfaces before and after coating reveal the
formation of interstitial diffusion and oxidation layers at the Al-Cu and
Al-SiO2 boundaries. Finally, we show that EUV CDI provides a unique capability
for quantitative, chemically-specific imaging of buried structures, and the
material evolution that occurs at these buried interfaces, compared with all
other approaches.Comment: 12 pages, 8 figure
Hepatitis C viral evolution in genotype 1 treatment-naïve and treatment-experienced patients receiving telaprevir-based therapy in clinical trials
Background: In patients with genotype 1 chronic hepatitis C infection, telaprevir (TVR) in combination with peginterferon and ribavirin (PR) significantly increased sustained virologic response (SVR) rates compared with PR alone. However, genotypic changes could be observed in TVR-treated patients who did not achieve an SVR.
Methods: Population sequence analysis of the NS3•4A region was performed in patients who did not achieve SVR with TVR-based treatment.
Results: Resistant variants were observed after treatment with a telaprevir-based regimen in 12% of treatment-naïve patients (ADVANCE; T12PR arm), 6% of prior relapsers, 24% of prior partial responders, and 51% of prior null responder patients (REALIZE, T12PR48 arms). NS3 protease variants V36M, R155K, and V36M+R155K emerged frequently in patients with genotype 1a and V36A, T54A, and A156S/T in patients with genotype 1b. Lower-level resistance to telaprevir was conferred by V36A/M, T54A/S, R155K/T, and A156S variants; and higher-level resistance to telaprevir was conferred by A156T and V36M+R155K variants. Virologic failure during telaprevir treatment was more common in patients with genotype 1a and in prior PR nonresponder patients and was associated with higher-level telaprevir-resistant variants. Relapse was usually associated with wild-type or lower-level resistant variants. After treatment, viral populations were wild-type with a median time of 10 months for genotype 1a and 3 weeks for genotype 1b patients.
Conclusions: A consistent, subtype-dependent resistance profile was observed in patients who did not achieve an SVR with telaprevir-based treatment. The primary role of TVR is to inhibit wild-type virus and variants with lower-levels of resistance to telaprevir. The complementary role of PR is to clear any remaining telaprevir-resistant variants, especially higher-level telaprevir-resistant variants. Resistant variants are detectable in most patients who fail to achieve SVR, but their levels decline over time after treatment
Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77151/1/AIAA-36711-537.pd
Aeroelastic Response and Protection of Space Shuttle External Tank Cable Trays
Sections of the Space Shuttle External Tank Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) cable trays are shielded from potentially damaging airloads with foam Protuberance Aerodynamic Load (PAL) Ramps. Flight standard design LO2 and LH2 cable tray sections were tested with and without PAL Ramp models in the United States Air Force Arnold Engineering Development Center s (AEDC) 16T transonic wind tunnel to obtain experimental data on the aeroelastic stability and response characteristics of the trays and as part of the larger effort to determine whether the PAL ramps can be safely modified or removed. Computational Fluid Dynamic simulations of the full-stack shuttle launch configuration were used to investigate the flow characeristics around and under the cable trays without the protective PAL ramps and to define maximum crossflow Mach numbers and dynamic pressures experienced during launch. These crossflow conditions were used to establish wind tunnel test conditions which also included conservative margins. For all of the conditions and configurations tested, no aeroelastic instabilities or unacceptable dynamic response levels were encountered and no visible structural damage was experienced by any of the tested cable tray sections. Based upon this aeroelastic characterization test, three potentially acceptable alternatives are available for the LO2 cable tray PAL Ramps: Mini-Ramps, Tray Fences, or No Ramps. All configurations were tested to maximum conditions, except the LH2 trays at -15 deg. crossflow angle. This exception is the only caveat preventing the proposal of acceptable alternative configurations for the LH2 trays as well. Structural assessment of all tray loads and tray response measurements from launches following the Shuttle Return To Flight with the existing PAL Ramps will determine the acceptability of these PAL Ramp alternatives
NLO BFKL Equation, Running Coupling and Renormalization Scales
I examine the solution of the BFKL equation with NLO corrections relevant for
deep inelastic scattering. Particular emphasis is placed on the part played by
the running of the coupling. It is shown that the solution factorizes into a
part describing the evolution in Q^2, and a constant part describing the input
distribution. The latter is infrared dominated, being described by a coupling
which grows as x decreases, and thus being contaminated by infrared
renormalons. Hence, for this part we agree with previous assertions that
predictive power breaks down for small enough x at any Q^2. However, the former
is ultraviolet dominated, being described by a coupling which falls like
1/(\ln(Q^2/\Lambda^2) + A(\bar\alpha_s(Q^2)\ln(1/x))^1/2)with decreasing x, and
thus is perturbatively calculable at all x. Therefore, although the BFKL
equation is unable to predict the input for a structure function for small x,
it is able to predict its evolution in Q^2, as we would expect from the
factorization theory. The evolution at small x has no true powerlike behaviour
due to the fall of the coupling, but does have significant differences from
that predicted from a standard NLO in alpha_s treatment. Application of the
resummed splitting functions with the appropriate coupling constant to an
analysis of data, i.e. a global fit, is very successful.Comment: Tex file, including a modification of Harvmac, 46 pages, 8 figures as
.ps files. Correction of typos, updating of references, very minor
corrections to text and fig.
Rokhlin Dimension for Flows
This research was supported by GIF Grant 1137/2011, SFB 878 Groups, Geometry and Actions and ERC Grant No. 267079. Part of the research was conducted at the Fields institute during the 2014 thematic program on abstract harmonic analysis, Banach and operator algebras, and at the Mittag–Leffler institute during the 2016 program on Classification of Operator Algebras: Complexity, Rigidity, and Dynamics.Peer reviewedPostprin
- …