494 research outputs found

    Analytic theory of optical nanoplasmonic metamaterials

    No full text
    Recent advances in nano-fabrication techniques allow for the manufacture of optical metamaterials, bringing their unique and extra-ordinary properties to the visible regime and beyond. However, an analytical description of optical nano-plasmonic metamaterials is challenging due to the characteristic optical behaviour of metals. Here we present an analytical theory that allows to bring established microwave metamaterials models to optical wavelengths. This method is implemented for nano-scaled plasmonic wire-mesh and tri-helical metamaterials, and we obtain an accurate prediction for their dispersive behaviour at optical and near-IR wavelengths

    The effect of underwater sounds on shark behaviour

    Get PDF
    The effect of sound on the behaviour of sharks has not been investigated since the 1970s. Sound is, however, an important sensory stimulus underwater, as it can spread in all directions quickly and propagate further than any other sensory cue. We used a baited underwater camera rig to record the behavioural responses of eight species of sharks (seven reef and coastal shark species and the white shark, Carcharodon carcharias) to the playback of two distinct sound stimuli in the wild: an orca call sequence and an artificially generated sound. When sounds were playing, reef and coastal sharks were less numerous in the area, were responsible for fewer interactions with the baited test rigs, and displayed less ‘inquisitive’ behaviour, compared to during silent control trials. White sharks spent less time around the baited camera rig when the artificial sound was presented, but showed no significant difference in behaviour in response to orca calls. The use of the presented acoustic stimuli alone is not an effective deterrent for C. carcharias. The behavioural response of reef sharks to sound raises concern about the effects of anthropogenic noise on these taxa

    Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders

    Full text link
    We analyze the Casimir force between two parallel infinite metal cylinders, with nearby metal plates (sidewalls), using complementary methods for mutual confirmation. The attractive force between cylinders is shown to have a nonmonotonic dependence on the separation to the plates. This intrinsically multi-body phenomenon, which occurs with either one or two sidewalls (generalizing an earlier result for squares between two sidewalls), does not follow from any simple two-body force description. We can, however, explain the nonmonotonicity by considering the screening (enhancement) of the interactions by the fluctuating charges (currents) on the two cylinders, and their images on the nearby plate(s). Furthermore, we show that this effect also implies a nonmonotonic dependence of the cylinder-plate force on the cylinder-cylinder separation.Comment: 5 pages, 4 figure

    Raman study of magnetic excitations and magneto-elastic coupling in alpha-SrCr2O4

    Full text link
    Using Raman spectroscopy, we investigate the lattice phonons, magnetic excitations, and magneto-elastic coupling in the distorted triangular-lattice Heisenberg antiferromagnet alpha-SrCr2O4, which develops helical magnetic order below 43 K. Temperature dependent phonon spectra are compared to predictions from density functional theory calculations which allows us to assign the observed modes and identify weak effects arising from coupled lattice and magnetic degrees of freedom. Raman scattering associated with two-magnon excitations is observed at 20 meV and 40 meV. These energies are in general agreement with our ab-initio calculations of exchange interactions and earlier theoretical predictions of the two-magnon Raman response of triangular-lattice antiferromagnets. The temperature dependence of the two-magnon excitations indicates that spin correlations persist well above the N\'eel temperature

    Theory of Supercoupling, Squeezing Wave Energy, and Field Confinement in Narrow Channels and Tight Bends Using Epsilon-Near-Zero Metamaterials

    Get PDF
    In this work, we investigate the detailed theory of the supercoupling, anomalous tunneling effect, and field confinement originally identified in [M. Silveirinha, N. Engheta, Phys. Rev. Lett. 97, 157403, (2006)], where we demonstrated the possibility of using materials with permittivity near zero to drastically improve the transmission of electromagnetic energy through a narrow irregular channel with very subwavelength transverse cross-section. Here, we present additional physical insights, describe new applications of the tunneling effect in relevant waveguide scenarios (e.g., the "perfect" or "super" waveguide coupling), study the effect of metal losses in the metallic walls, and the possibility of using epsilon-near zero materials to confine energy in a subwavelength cavity with gigantic field enhancement. In addition, we systematically study the propagation of electromagnetic waves through narrow channels filled with anisotropic epsilon-near zero materials. It is demonstrated that these materials may have interesting potentials, and that for some particular geometries the reflectivity of the channel is independent of the specific dimensions or parameters of epsilon-near zero transition. We also describe several realistic metamaterial implementations of the studied problems, based on standard metallic waveguides, microstrip line configurations, and wire media.Comment: under revie

    Software for Spatial Statistics

    Get PDF
    We give an overview of the papers published in this special issue on spatial statistics, of the Journal of Statistical Software. 21 papers address issues covering visualization (micromaps, links to Google Maps or Google Earth), point pattern analysis, geostatistics, analysis of areal aggregated or lattice data, spatio-temporal statistics, Bayesian spatial statistics, and Laplace approximations. We also point to earlier publications in this journal on the same topic

    Vector electromagnetic theory of transition and diffraction radiation with application to the measurement of longitudinal bunch size

    Full text link
    We have developed a novel method based on vector electromagnetic theory and Schellkunoff's principles to calculate the spectral and angular distributions of transtion radiation (TR) and diffraction radiation (DR) produced by a charged particle interacting with an arbitrary target. The vector method predicts the polarization and spectral angular distributions of the radiation at an arbitrary distance form the source, i.e. in both the near and far fields, and in any direction of observation. The radiation fields of TR and DR calculated with the commonly used scalar Huygens model are shown to be limiting forms of those predicted by the vector theory and the regime of validity of the scalar theory is explicitly shown. Calculations of TR and DR done using the vector model are compared to results available in the literature for various limiting cases and for cases of more general interest. Our theory has important applications in the design of TR and DR diagnostics particularly those that utilize coherent TR or DR to infer the longitudinal bunch size and shape. A new technique to determine the bunch length using the angular distribution of coherent TR or DR is proposed.Comment: 47 pages, 16 figures, accepted for publication in Phys. Rev. ST. Accel. and Beam

    MTL-CEBPA, a Small Activating RNA Therapeutic Upregulating C/EBP-α, in Patients with Advanced Liver Cancer: A First-in-Human, Multicenter, Open-Label, Phase I Trial.

    Get PDF
    PURPOSE: Transcription factor C/EBP-α (CCAAT/enhancer-binding protein alpha) acts as a master regulator of hepatic and myeloid functions and multiple oncogenic processes. MTL-CEBPA is a first-in-class small activating RNA oligonucleotide drug that upregulates C/EBP-α. PATIENTS AND METHODS: We conducted a phase I, open-label, dose-escalation trial of MTL-CEBPA in adults with advanced hepatocellular carcinoma (HCC) with cirrhosis, or resulting from nonalcoholic steatohepatitis or with liver metastases. Patients received intravenous MTL-CEBPA once a week for 3 weeks followed by a rest period of 1 week per treatment cycle in the dose-escalation phase (3+3 design). RESULTS: Thirty-eight participants have been treated across six dose levels (28-160 mg/m2) and three dosing schedules. Thirty-four patients were evaluable for safety endpoints at 28 days. MTL-CEBPA treatment-related adverse events were not associated with dose, and no maximum dose was reached across the three schedules evaluated. Grade 3 treatment-related adverse events occurred in nine (24%) patients. In 24 patients with HCC evaluable for efficacy, an objective tumor response was achieved in one patient [4%; partial response (PR) for over 2 years] and stable disease (SD) in 12 (50%). After discontinuation of MTL-CEBPA, seven patients were treated with tyrosine kinase inhibitors (TKIs); three patients had a complete response with one further PR and two with SD. CONCLUSIONS: MTL-CEBPA is the first saRNA in clinical trials and demonstrates an acceptable safety profile and potential synergistic efficacy with TKIs in HCC. These encouraging phase I data validate targeting of C/EBP-α and have prompted MTL-CEBPA + sorafenib combination studies in HCC
    • …
    corecore