36 research outputs found
Future directions for scientific advice in Europe
Across Europe, scientific evidence and advice is in great demand, to inform policies and decision making on issues such as climate change, new technologies and environmental regulation. But the diversity of political cultures and attitudes to expertise in different European countries can make the task of designing EU-wide advisory institutions and processes both sensitive and complex.
In January 2015, President Juncker asked Commissioner Moedas to report on options for improving scientific advice within the European Commission. At a time when these issues are higher than usual on the political agenda, it is important that the case for scientific advice and evidence-informed policy is articulated and analysed afresh.
To support these efforts, this collection brings together agenda-setting essays by policymakers, practitioners, scientists and scholars from across Europe. Authors include Anne Glover, Ulrike Felt, Robert Madelin, Andy Stirling, VladimĂr Ć ucha and Jos van der Meer. Their contributions outline various challenges but also constructive ways forward for scientific advice in Europe
Recommended from our members
Future directions for scientific advice in Whitehall
Scientific advice has never been in greater demand; nor has it been more contested. From climate change to cyber-security, poverty to pandemics, food technologies to fracking, the questions being asked of scientists, engineers, social scientists and other experts by policymakers, the media and the public continue to multiply. At the same time, in the wake of the financial crisis and controversies such as âClimategateâ, the authority and legitimacy of those same experts is under greater scrutiny. To mark the transition in April 2013 to Sir Mark Walport as the UKâs chief scientific adviser, this collection brings together new essays by more than 20 leading thinkers and practitioners, including Sir John Beddington,Sheila Jasanoff, Geoff Mulgan, Roger Pielke Jr., Jill Rutter, Mike Hulme and Sir Bob Watson. In the context of the UK government agenda for Whitehall reform, and a growing emphasis on the use of evidence in policy, these contributors chart future directions for the politics and practice of scientific advice. This project is a collaborative initiative of five partners: University of Cambridgeâs Centre for Science and Policy; Science Policy Research Unit(SPRU) and ESRC STEPS Centre at the University of Sussex; Alliance for Useful Evidence; Institute for Government; and Sciencewise
Behavioural Governance in Europe
StraĂheim H, Korinek R-L. Behavioural Governance in Europe. In: Doubleday R, Wilsdon J, eds. Future directions for scientific advice in Europe. Cambridge, London: CSaP/SPRU; 2015: 153-160
Science policy: beyond the great and good
Chief scientific advisers need better support and networks to ensure that science advice to governments is robus
Coordinating Multiple Spacecraft Assets for Joint Science Campaigns
This paper describes technology to support a new paradigm of space science campaigns. These campaigns enable opportunistic science observations to be autonomously coordinated between multiple spacecraft. Coordinated spacecraft can consist of multiple orbiters, landers, rovers, or other in-situ vehicles (such as an aerobot). In this paradigm, opportunistic science detections can be cued by any of these assets where additional spacecraft are requested to take further observations characterizing the identified event or surface feature. Such coordination will enable a number of science campaigns not possible with present spacecraft technology. Examples from Mars include enabling rapid data collection from multiple craft on dynamic events such as new Mars dark slope streaks, dust-devils or trace gases. Technology to support the identification of opportunistic science events and/or the re-tasking of a spacecraft to take new measurements of the event is already in place on several individual missions such as the Mars Exploration Rover (MER) Mission and the Earth Observing One (EO1) Mission. This technology includes onboard data analysis techniques as well as capabilities for planning and scheduling. This paper describes how these techniques can be cue and coordinate multiple spacecraft in observing the same science event from their different vantage points