16 research outputs found

    Concurrent expression of procoagulant and plasminogen activator activities by rabbit alveolar macrophages in vitro: Opposite modulating effects of prostaglandin E2

    Full text link
    We examined the effects of arachidonic acid metabolites on the simultaneous expression of procoagulant (PC) and plasminogen activator (PA) activities by rabbit alveolar macrophages. Incubation with lymphocyte-conditioned medium (LCM) caused a significant increase in cell-associated PC activity. Co-treatment with indomethacin (1 [mu]M) reduced this augmentation in PC activity by 33% (p 2 in concentrations as low as 1 nM. Addition of 100 nM PGE2 to these cells caused an increase in PC activity 2.7-fold greater than that achieved by LCM alone, while PGE2 suppressed released PA activity by 62%. PGE2 and indomethacin had similar but less pronounced effects on phorbol myristate acetate-treated cells. These effects of PGE2 could be duplicated by PGE1, but not by any other arachidonic acid metabolite (PGF2[alpha], PGI2, PGD2, ddPGF2[alpha], LTB4, or LTC4). While PGE2 increases intracellular levels of cAMP, the observed effects on PC and PA activities could not be reproduced fully by treatment with dibutyryl cAMP. We conclude that PGE2 amplifies the augmentation of PC activity by stimulated alveolar macrophages while concurrently inhibiting expression of plasminogen activator. This suggests that PGE2 may be a significant mediator in regulating the highly interactive processes of inflammation and coagulation/fibrinolysis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27166/1/0000161.pd

    Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human papillomavirus (HPV) vaccines based on major capsid protein L1 are licensed in over 100 countries to prevent HPV infections. The yeast-derived recombinant quadrivalent HPV L1 vaccine, GARDASIL(R), has played an important role in reducing cancer and genital warts since its introduction in 2006. The L1 proteins self-assemble into virus-like particles (VLPs).</p> <p>Results</p> <p>VLPs were subjected to post-purification disassembly and reassembly (D/R) treatment during bioprocessing to improve VLP immunoreactivity and stability. The post-D/R HPV16 VLPs and their complex with H16.V5 neutralizing antibody Fab fragments were visualized by cryo electron microscopy, showing VLPs densely decorated with antibody. Along with structural improvements, post-D/R VLPs showed markedly higher antigenicity to conformational and neutralizing monoclonal antibodies (mAbs) H16.V5, H16.E70 and H263.A2, whereas binding to mAbs recognizing linear epitopes (H16.J4, H16.O7, and H16.H5) was greatly reduced.</p> <p>Strikingly, post-D/R VLPs showed no detectable binding to H16.H5, indicating that the H16.H5 epitope is not accessible in fully assembled VLPs. An atomic homology model of the entire</p> <p>HPV16 VLP was generated based on previously determined high-resolution structures of bovine papillomavirus and HPV16 L1 pentameric capsomeres.</p> <p>Conclusions</p> <p>D/R treatment of HPV16 L1 VLPs produces more homogeneous VLPs with more virion-like antibody reactivity. These effects can be attributed to a combination of more complete and regular assembly of the VLPs, better folding of L1, reduced non-specific disulfide-mediated aggregation and increased stability of the VLPs. Markedly different antigenicity of HPV16 VLPs was observed upon D/R treatment with a panel of monoclonal antibodies targeting neutralization sensitive epitopes. Multiple epitope-specific assays with a panel of mAbs with different properties and epitopes are required to gain a better understanding of the immunochemical properties of VLPs and to correlate the observed changes at the molecular level. Mapping of known antibody epitopes to the homology model explains the changes in antibody reactivity upon D/R. In particular, the H16.H5 epitope is partially occluded by intercapsomeric interactions involving the L1 C-terminal arm. The homology model allows a more precise mapping of antibody epitopes. This work provides a better understanding of VLPs in current vaccines and could guide the design of improved vaccines or therapeutics.</p

    Toolbox for Non-Intrusive Structural and Functional Analysis of Recombinant VLP Based Vaccines: A Case Study with Hepatitis B Vaccine

    Get PDF
    Background: Fundamental to vaccine development, manufacturing consistency, and product stability is an understanding of the vaccine structure-activity relationship. With the virus-like particle (VLP) approach for recombinant vaccines gaining popularity, there is growing demand for tools that define their key characteristics. We assessed a suite of non-intrusive VLP epitope structure and function characterization tools by application to the Hepatitis B surface antigen (rHBsAg) VLP-based vaccine. Methodology: The epitope-specific immune reactivity of rHBsAg epitopes to a given monoclonal antibody was monitored by surface plasmon resonance (SPR) and quantitatively analyzed on rHBsAg VLPs in-solution or bound to adjuvant with a competitive enzyme-linked immunosorbent assay (ELISA). The structure of recombinant rHBsAg particles was examined by cryo transmission electron microscopy (cryoTEM) and in-solution atomic force microscopy (AFM). Principal Findings: SPR and competitive ELISA determined relative antigenicity in solution, in real time, with rapid turnaround, and without the need of dissolving the particulate aluminum based adjuvant. These methods demonstrated the nature of the clinically relevant epitopes of HBsAg as being responsive to heat and/or redox treatment. In-solution AFM and cryoTEM determined vaccine particle size distribution, shape, and morphology. Redox-treated rHBsAg enabled 3D reconstruction from CryoTEM images – confirming the previously proposed octahedral structure and the established lipidto-protei

    Disassembly and reassembly improves morphology and thermal stability of human papillomavirus type 16 virus-like particles

    No full text
    Recombinant human papillomavirus (HPV) 16 L1 protein self-assembles into virus-like particles (VLPs) with diameters of 40 to 60 nm, which are key components in prophylactic HPV vaccines. Marked improvement in morphology and thermal stability on VLP disassembly and reassembly was demonstrated at production scale. Differential scanning calorimetry showed enhanced conformational stability as indicated by the unfolding temperatures and peak heights/areas. Cloud point studies indicated (1) a much lower propensity for post-reassembly VLPs to aggregate during a time course study and (2) much higher cloud point temperatures. In-solution atomic force microscopy showed more uniform size distribution and fully closed particles, with evidence of virion-like assembly revealed by the structural details from a single particle image. Similar approaches for the reassembly of other recombinant VLPs with intrinsic conformational switches would be expected to improve the particle properties and render nanoparticles more suitable for use as vaccines or therapeutics. From the Clinical Editor: The authors of this study demonstrated that recombinant human papillomavirus 16 L1 protein self-assembles into virus-like particles (VLPs) with marked improvement in morphology and thermal stability on VLP disassembly and reassembly at production scale. This is expected to render these nanoparticles more suitable for use as vaccines or therapeutics. (C) 2012 Elsevier Inc. All rights reserved

    Characterization of virus-like particles in GARDASIL (R) by cryo transmission electron microscopy

    No full text
    Chinese National Science Fund [81273327]; 863 Major Project [2012AA02A408]Cryo-transmission electron microscopy (cryoTEM) is a powerful characterization method for assessing the structural properties of biopharmaceutical nanoparticles, including Virus Like Particle-based vaccines. We demonstrate the method using the Human Papilloma Virus (HPV) VLPs in GARDASIL (R). CryoTEM, coupled to automated data collection and analysis, was used to acquire images of the particles in their hydrated state, determine their morphological characteristics, and confirm the integrity of the particles when absorbed to aluminum adjuvant. In addition, we determined the three-dimensional structure of the VLPs, both alone and when interacting with neutralizing antibodies. Two modes of binding of two different neutralizing antibodies were apparent; for HPV type 11 saturated with H11.B2, 72 potential Fab binding sites were observed at the center of each capsomer, whereas for HPV 16 interacting with H16.V5, it appears that 60 pentamers (each neighboring 6 other pentamers) bind five Fabs per pentamer, for the total of 300 potential Fab binding sites per VLP

    Non-intrusive biophysical and immunochemical methods evaluated here for VLP characterization compared with conventional techniques.

    No full text
    *<p>The solution competitive ELISA measures the accessible epitopes on VLPs adsorbed to particulate adjuvant. This method is used to probe the stability samples upon prolonged storage in a more faithful manner as to the intact and accessible epitopes. In addition, this method may also mimic the <i>in vivo</i> antigen presentation to some degree without the needs to dissolve the aluminum adjuvant, which is co-injected with antigen during immunization.</p

    CryoTEM map of rHBsAg lipid-protein particle.

    No full text
    <p>(A) The resulting 3D map presented with roughly spherical morphology with “knuckle”-like protrusions projecting from a smooth surface. (B) Segmentation of the map revealed regions of high density, presumed to be protein, surrounded by regions of lesser density, presumed to be lipid. Map shown end-on for the 4-fold (top left), 2-fold (top right), and 3-fold (bottom left) views.</p

    Structural features of the protein containing protrusion and surrounding lipid layer.

    No full text
    <p>(A) A single protein protrusion with associated lipid was segmented from the 3D map and (B) various structural features present in the lipid and protein densities were identified. The protein unit is composed of a body (bd), shoulder (sh), and arm (ar) region, and the lipid layer is composed of an outer layer (oL) and an inner layer (iL).</p
    corecore