36 research outputs found

    Investigation of the Performance of the New Orleans Flood Protection System in Hurricane Katrina on August 29, 2005: Volume 1

    Get PDF
    This report presents the results of an investigation of the performance of the New Orleans regional flood protection system during and after Hurricane Katrina, which struck the New Orleans region on August 29, 2005. This event resulted in the single most costly catastrophic failure of an engineered system in history. Current damage estimates at the time of this writing are on the order of 100to100 to 200 billion in the greater New Orleans area, and the official death count in New Orleans and southern Louisiana at the time of this writing stands at 1,293, with an additional 306 deaths in nearby southern Mississippi. An additional approximately 300 people are currently still listed as “missing”; it is expected that some of these missing were temporarily lost in the shuffle of the regional evacuation, but some of these are expected to have been carried out into the swamps and the Gulf of Mexico by the storm’s floodwaters, and some are expected to be recovered in the ongoing sifting through the debris of wrecked homes and businesses, so the current overall regional death count of 1,599 is expected to continue to rise a bit further. More than 450,000 people were initially displaced by this catastrophe, and at the time of this writing more than 200,000 residents of the greater New Orleans metropolitan area continue to be displaced from their homes by the floodwater damages from this storm event. This investigation has targeted three main questions as follow: (1) What happened?, (2) Why?, and (3) What types of changes are necessary to prevent recurrence of a disaster of this scale again in the future? To address these questions, this investigation has involved: (1) an initial field reconnaissance, forensic study and data gathering effort performed quickly after the arrival of Hurricanes Katrina (August 29, 2005) and Rita (September 24, 2005), (2) a review of the history of the regional flood protection system and its development, (3) a review of the challenging regional geology, (4) detailed studies of the events during Hurricanes Katrina and Rita, as well as the causes and mechanisms of the principal failures, (4) studies of the organizational and institutional issues affecting the performance of the flood protection system, (5) observations regarding the emergency repair and ongoing interim levee reconstruction efforts, and (6) development of findings and preliminary recommendations regarding changes that appear warranted in order to prevent recurrence of this type of catastrophe in the future. In the end, it is concluded that many things went wrong with the New Orleans flood protection system during Hurricane Katrina, and that the resulting catastrophe had it roots in three main causes: (1) a major natural disaster (the Hurricane itself), (2) the poor performance of the flood protection system, due to localized engineering failures, questionable judgments, errors, etc. involved in the detailed design, construction, operation and maintenance of the system, and (3) more global “organizational” and institutional problems associated with the governmental and local organizations responsible for the design, construction, operation, maintenance and funding of the overall flood protection system

    Cancer Treatment and Bone Health

    Get PDF
    Considerable advances in oncology over recent decades have led to improved survival, while raising concerns about long-term consequences of anticancer treatments. In patients with breast or prostate malignancies, bone health is a major issue due to the high risk of bone metastases and the frequent prolonged use of hormone therapies that alter physiological bone turnover, leading to increased fracture risk. Thus, the onset of cancer treatment-induced bone loss (CTIBL) should be considered by clinicians and recent guidelines should be routinely applied to these patients. In particular, baseline and periodic follow-up evaluations of bone health parameters enable the identification of patients at high risk of osteoporosis and fractures, which can be prevented by the use of bone-targeting agents (BTAs), calcium and vitamin D supplementation and modifications of lifestyle. This review will focus upon the pathophysiology of breast and prostate cancer treatment-induced bone loss and the most recent evidence about effective preventive and therapeutic strategies

    New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

    Get PDF
    GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde). Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA's TEMPO and ESA's Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)
    corecore