1,072 research outputs found

    Treatment of prostate cancer: therapeutic potential of targeted immunotherapy with APC8015

    Get PDF
    The body’s immune system has some capacity to recognize and attack cancerous growths, including prostate cancer. However, various intrinsic characteristics of tumor cells usually limit that capacity. Therapeutically administered immunologic stimuli, such as APC8015, an individualized, ex vivo stimulation of a patient’s own antigen presenting cells (APC), are capable of boosting the anti-tumor response. Late phase clinical trials of APC8015 (now also called Sipuleucel-T) show evidence of slowing disease progression and increasing survival in advanced prostate cancer. Such immunotherapeutic approaches hold real promise to provide additional useful and welcome weapons against this common malignancy

    Noninvasive in vivo imaging of diabetes-induced renal oxidative stress and response to therapy using hyperpolarized 13C dehydroascorbate magnetic resonance.

    Get PDF
    Oxidative stress has been proposed to be a unifying cause for diabetic nephropathy and a target for novel therapies. Here we apply a new endogenous reduction-oxidation (redox) sensor, hyperpolarized (HP) (13)C dehydroascorbate (DHA), in conjunction with MRI to noninvasively interrogate the renal redox capacity in a mouse diabetes model. The diabetic mice demonstrate an early decrease in renal redox capacity, as shown by the lower in vivo HP (13)C DHA reduction to the antioxidant vitamin C (VitC), prior to histological evidence of nephropathy. This correlates with lower tissue reduced glutathione (GSH) concentration and higher NADPH oxidase 4 (Nox4) expression, consistent with increased superoxide generation and oxidative stress. ACE inhibition restores the HP (13)C DHA reduction to VitC with concomitant normalization of GSH concentration and Nox4 expression in diabetic mice. HP (13)C DHA enables rapid in vivo assessment of altered redox capacity in diabetic renal injury and after successful treatment

    Avian taxonomic and functional diversity in early stage of longleaf pine (Pinus palustris) stands restored at agricultural lands: Variations in scale dependency

    Get PDF
    In agricultural landscapes, the Longleaf Pine Initiative (LLPI) and the Bobwhite Quail Initiative (BQI) aim to restore longleaf pine forests and early successional habitats, respectively. The early stage of longleaf pine stands and grass and forb vegetation produced by a combination of both restoration programs (LLPI-BQI) may form habitat conditions favorable to early successional bird species and other birds, increasing avian diversity. We investigated how the LLPI and BQI programs affected taxonomic and functional diversity of birds and abundance of early successional birds (grassland and scrub/shrub species), and what environmental characteristics were associated with the diversity and abundance of birds. Our study was performed at 41 fields in Georgia, USA, during 2001-2002 by considering environmental characteristics at two spatial scales: local-scale vegetation features and restoration program type (LLPI or LLPI-BQI) and landscape-scale vegetation features and landscape heterogeneity. Functional evenness, species richness, and abundance of grassland and scrub/shrub species did not show a clear association with local- or landscape-scale variables. Shannon-Wiener diversity was slightly influenced by restoration program type (local-scale variable) with higher value at LLPI-BQI stands than at LLPI stands despite no significant differences in local vegetation features between those stands. Functional divergence was strongly positively associated with landscape-scale variables. That is, niche differentiation increased with increasing shrub coverage within a landscape, reducing competition between abundant bird species and others. Our results suggest that although a combination of BQI and LLPI program may have a positive effect on avian taxonomic diversity, it is important to consider shrub vegetation cover within a landscape to improve functional diversity

    Avian taxonomic and functional diversity in early stage of longleaf pine (Pinus palustris) stands restored at agricultural lands: Variations in scale dependency

    Get PDF
    In agricultural landscapes, the Longleaf Pine Initiative (LLPI) and the Bobwhite Quail Initiative (BQI) aim to restore longleaf pine forests and early successional habitats, respectively. The early stage of longleaf pine stands and grass and forb vegetation produced by a combination of both restoration programs (LLPI-BQI) may form habitat conditions favorable to early successional bird species and other birds, increasing avian diversity. We investigated how the LLPI and BQI programs affected taxonomic and functional diversity of birds and abundance of early successional birds (grassland and scrub/shrub species), and what environmental characteristics were associated with the diversity and abundance of birds. Our study was performed at 41 fields in Georgia, USA, during 2001-2002 by considering environmental characteristics at two spatial scales: local-scale vegetation features and restoration program type (LLPI or LLPI-BQI) and landscape-scale vegetation features and landscape heterogeneity. Functional evenness, species richness, and abundance of grassland and scrub/shrub species did not show a clear association with local- or landscape-scale variables. Shannon-Wiener diversity was slightly influenced by restoration program type (local-scale variable) with higher value at LLPI-BQI stands than at LLPI stands despite no significant differences in local vegetation features between those stands. Functional divergence was strongly positively associated with landscape-scale variables. That is, niche differentiation increased with increasing shrub coverage within a landscape, reducing competition between abundant bird species and others. Our results suggest that although a combination of BQI and LLPI program may have a positive effect on avian taxonomic diversity, it is important to consider shrub vegetation cover within a landscape to improve functional diversity

    Hyperpolarized 13C Spectroscopic Evaluation of Oxidative Stress in a Rodent Model of Steatohepatitis.

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) has become highly prevalent, now considered the most common liver disease in the western world. Approximately one-third of patients with NASH develop non-alchoholic steatohepatitis (NASH), histologically defined by lobular and portal inflammation, and accompanied by marked oxidative stress. Patients with NASH are at increased risk for cirrhosis and hepatocellular carcinoma, and diagnosis currently requires invasive biopsy. In animal models of NASH, particularly the methionine-choline deficient (MCD) model, profound changes are seen in redox enzymes and key intracellular antioxidants. To study antioxidant status in NASH non-invasively, we applied the redox probe hyperpolarized [1-13C] dehydroascorbic acid (HP DHA), which is reduced to Vitamin C (VitC) rapidly in the normal liver. In MCD mice, we observed a significant decrease in HP DHA to VitC conversion that accompanied hepatic fat deposition. When these animals were subsequently placed on a normal diet, resonance ratios reverted to those seen in control mice. These findings suggest that HP DHA, a potentially clinically translatable imaging agent, holds special promise in imaging NASH and other metabolic syndromes, to monitor disease progression and response to targeted therapies

    Minimization of NBTI performance degradation using internal node control

    Full text link
    Abstract—Negative Bias Temperature Instability (NBTI) is a significant reliability concern for nanoscale CMOS circuits. Its effects on circuit timing can be especially pronounced for circuits with standby-mode equipped functional units because these units can be subjected to static NBTI stress for extended periods of time. This paper proposes internal node control, in which the inputs to individual gates are directly manipulated to prevent this static NBTI fatigue. We give a mixed integer linear program formulation for an optimal solution to this problem. The optimal placement of internal node control yields an average 26.7 % reduction in NBTI-induced delay over a ten year period for the ISCAS85 benchmarks. We find that the problem is NP-complete and present a linear-time heuristic that can be used to quickly find near-optimal solutions. The heuristic solutions are, on average, within 0.17 % of optimal and all were within 0.60% of optimal. I
    corecore