869 research outputs found

    Ultra-long-term follow-up of pediatric spinal deformity problems: 23 patients with a mean follow-up of 51 years

    Get PDF
    AbstractBackground.The aim of this study was to analyze the true outcomes of a unique cohort of patients with spinal deformities who were treated as children and followed for 40 or more years.Methods.Altogether, 23 patients were reviewed who had been originally treated in our community, whose original charts and radiographs were still available, and who had undergone recent evaluation.Results.The diagnoses were congenital deformity in eight, adolescent idiopathic scoliosis in four, poliomyelitis in three, infantile idiopathic scoliosis in two, spondylolisthesis in two, and one each of tuberculosis and dwarfism. Sixteen had undergone fusion surgery.Conclusions.Early spine fusion for deformity produced far better results than delayed fusion. A solid fusion at the end of growth remained unchanged. Degenerative changes outside the fusion area were rare and seldom required further surgery. In summary, 23 patients with a mean follow-up of 51 years after treatment are presented. Early fusion was far superior to delayed or nonsurgical treatment

    Rokhlin Dimension for Flows

    Get PDF
    This research was supported by GIF Grant 1137/2011, SFB 878 Groups, Geometry and Actions and ERC Grant No. 267079. Part of the research was conducted at the Fields institute during the 2014 thematic program on abstract harmonic analysis, Banach and operator algebras, and at the Mittag–Leffler institute during the 2016 program on Classification of Operator Algebras: Complexity, Rigidity, and Dynamics.Peer reviewedPostprin

    Dried blood spot analysis for the quantification of vancomycin and creatinine using liquid chromatography – tandem mass spectrometry:Method development and validation

    Get PDF
    Background: Vancomycin is a widely used antibiotic for the treatment of gram-positive bacterial infections, especially for methicillin-resistant Staphylococcus aureus (MRSA) infections. Due to a small therapeutic range and large inter-patient variability, therapeutic drug monitoring (TDM) of vancomycin is required to minimize toxicity and maximize treatment efficacy. Venous blood sampling is mostly applied for TDM of vancomycin, although this widely used sampling method is more invasive compared to less painful alternatives, such as the dried blood spot (DBS) method, which can be performed at home. Method: We developed an UPLC-MS/MS method for the quantification of vancomycin and creatinine in DBS. A fast sample preparation and short analysis run time of 5.2 min were applied, which makes this method highly suitable for clinical settings. Validation was performed according to international (FDA and EMA) guidelines. Results: The validated concentration range was found linear for creatinine from 41.8 µmol/L to 722 µmol/L and for vancomycin from 3.8 mg/L to 76.6 mg/L (r2 &gt; 0.990) and the inaccuracies, imprecisions, hematocrit effects, and recoveries were &lt; 15 % for both compounds. No significant carryover effect was observed. Conclusion: Hence, we successfully validated a quantification method for the simultaneous determination of creatinine and vancomycin in DBS.</p

    Optimal Configuration of Proton-Therapy Accelerators for Relative-Stopping-Power Resolution in Proton Computed Tomography

    Get PDF
    The determination of relative stopping power (RSP) via proton computed tomography (pCT) of a patient is dependent in part on the knowledge of the incoming proton kinetic energies; the uncertainty in these energies is in turn determined by the proton source—typically a cyclotron. Here, we show that reducing the incident proton beam energy spread may significantly improve RSP determination in pCT. We demonstrate that the reduction of beam energy spread from the typical 1.0% (at 70 MeV) down to 0.2% can be achieved at the proton currents needed for imaging at the Paul Scherrer Institut 250-MeV cyclotron. Through a simulated pCT imaging system, we find that this effect results in RSP resolutions as low as 0.2% for materials such as cortical bone, up to 1% for lung tissue. Several materials offer further improvement when the beam (residual) energy is also chosen such that the detection mechanisms used provide the optimal RSP resolution

    Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing

    Get PDF
    BACKGROUND: Whole genome amplification is an increasingly common technique through which minute amounts of DNA can be multiplied to generate quantities suitable for genetic testing and analysis. Questions of amplification-induced error and template bias generated by these methods have previously been addressed through either small scale (SNPs) or large scale (CGH array, FISH) methodologies. Here we utilized whole genome sequencing to assess amplification-induced bias in both coding and non-coding regions of two bacterial genomes. Halobacterium species NRC-1 DNA and Campylobacter jejuni were amplified by several common, commercially available protocols: multiple displacement amplification, primer extension pre-amplification and degenerate oligonucleotide primed PCR. The amplification-induced bias of each method was assessed by sequencing both genomes in their entirety using the 454 Sequencing System technology and comparing the results with those obtained from unamplified controls. RESULTS: All amplification methodologies induced statistically significant bias relative to the unamplified control. For the Halobacterium species NRC-1 genome, assessed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 119 times greater than those from unamplified material, 164.0 times greater for Repli-G, 165.0 times greater for PEP-PCR and 252.0 times greater than the unamplified controls for DOP-PCR. For Campylobacter jejuni, also analyzed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 15 times greater than those from unamplified material, 19.8 times greater for Repli-G, 61.8 times greater for PEP-PCR and 220.5 times greater than the unamplified controls for DOP-PCR. CONCLUSION: Of the amplification methodologies examined in this paper, the multiple displacement amplification products generated the least bias, and produced significantly higher yields of amplified DNA

    Unsupervised Bayesian linear unmixing of gene expression microarrays

    Get PDF
    Background: This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Results: Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. Conclusions: The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor

    Misuse of “Power” and other mechanical terms in sport and exercise science research

    Get PDF
    In spite of the Système International d’Unitès (SI) that was published in 1960, there continues to be widespread misuse of the terms and nomenclature of mechanics in descriptions of exercise performance. Misuse applies principally to failure to distinguish between mass and weight, velocity and speed, and especially the terms "work" and "power." These terms are incorrectly applied across the spectrum from high-intensity short-duration to long-duration endurance exercise. This review identifies these misapplications and proposes solutions. Solutions include adoption of the term "intensity" in descriptions and categorisations of challenge imposed on an individual as they perform exercise, followed by correct use of SI terms and units appropriate to the specific kind of exercise performed. Such adoption must occur by authors and reviewers of sport and exercise research reports to satisfy the principles and practices of science and for the field to advance
    corecore