7,913 research outputs found

    On computational tools for Bayesian data analysis

    Full text link
    While Robert and Rousseau (2010) addressed the foundational aspects of Bayesian analysis, the current chapter details its practical aspects through a review of the computational methods available for approximating Bayesian procedures. Recent innovations like Monte Carlo Markov chain, sequential Monte Carlo methods and more recently Approximate Bayesian Computation techniques have considerably increased the potential for Bayesian applications and they have also opened new avenues for Bayesian inference, first and foremost Bayesian model choice.Comment: This is a chapter for the book "Bayesian Methods and Expert Elicitation" edited by Klaus Bocker, 23 pages, 9 figure

    Importance sampling methods for Bayesian discrimination between embedded models

    Full text link
    This paper surveys some well-established approaches on the approximation of Bayes factors used in Bayesian model choice, mostly as covered in Chen et al. (2000). Our focus here is on methods that are based on importance sampling strategies rather than variable dimension techniques like reversible jump MCMC, including: crude Monte Carlo, maximum likelihood based importance sampling, bridge and harmonic mean sampling, as well as Chib's method based on the exploitation of a functional equality. We demonstrate in this survey how these different methods can be efficiently implemented for testing the significance of a predictive variable in a probit model. Finally, we compare their performances on a real dataset

    Bayesian Core: The Complete Solution Manual

    Full text link
    This solution manual contains the unabridged and original solutions to all the exercises proposed in Bayesian Core, along with R programs when necessary.Comment: 118+vii pages, 21 figures, 152 solution

    ABC likelihood-freee methods for model choice in Gibbs random fields

    Full text link
    Gibbs random fields (GRF) are polymorphous statistical models that can be used to analyse different types of dependence, in particular for spatially correlated data. However, when those models are faced with the challenge of selecting a dependence structure from many, the use of standard model choice methods is hampered by the unavailability of the normalising constant in the Gibbs likelihood. In particular, from a Bayesian perspective, the computation of the posterior probabilities of the models under competition requires special likelihood-free simulation techniques like the Approximate Bayesian Computation (ABC) algorithm that is intensively used in population genetics. We show in this paper how to implement an ABC algorithm geared towards model choice in the general setting of Gibbs random fields, demonstrating in particular that there exists a sufficient statistic across models. The accuracy of the approximation to the posterior probabilities can be further improved by importance sampling on the distribution of the models. The practical aspects of the method are detailed through two applications, the test of an iid Bernoulli model versus a first-order Markov chain, and the choice of a folding structure for two proteins.Comment: 19 pages, 5 figures, to appear in Bayesian Analysi

    Efficient learning in ABC algorithms

    Full text link
    Approximate Bayesian Computation has been successfully used in population genetics to bypass the calculation of the likelihood. These methods provide accurate estimates of the posterior distribution by comparing the observed dataset to a sample of datasets simulated from the model. Although parallelization is easily achieved, computation times for ensuring a suitable approximation quality of the posterior distribution are still high. To alleviate the computational burden, we propose an adaptive, sequential algorithm that runs faster than other ABC algorithms but maintains accuracy of the approximation. This proposal relies on the sequential Monte Carlo sampler of Del Moral et al. (2012) but is calibrated to reduce the number of simulations from the model. The paper concludes with numerical experiments on a toy example and on a population genetic study of Apis mellifera, where our algorithm was shown to be faster than traditional ABC schemes

    Approximate Bayesian Computational methods

    Full text link
    Also known as likelihood-free methods, approximate Bayesian computational (ABC) methods have appeared in the past ten years as the most satisfactory approach to untractable likelihood problems, first in genetics then in a broader spectrum of applications. However, these methods suffer to some degree from calibration difficulties that make them rather volatile in their implementation and thus render them suspicious to the users of more traditional Monte Carlo methods. In this survey, we study the various improvements and extensions made to the original ABC algorithm over the recent years.Comment: 7 figure
    corecore