1,258 research outputs found

    Deletion of the GABAA α2-subunit does not alter self dministration of cocaine or reinstatement of cocaine seeking

    Get PDF
    Rationale GABAA receptors containing α2-subunits are highly represented in brain areas that are involved in motivation and reward, and have been associated with addiction to several drugs, including cocaine. We have shown previously that a deletion of the α2-subunit results in an absence of sensitisation to cocaine. Objective We investigated the reinforcing properties of cocaine in GABAA α2-subunit knockout (KO) mice using an intravenous self-administration procedure. Methods α2-subunit wildtype (WT), heterozygous (HT) and KO mice were trained to lever press for a 30 % condensed milk solution. After implantation with a jugular catheter, mice were trained to lever press for cocaine (0.5 mg/kg/infusion) during ten daily sessions. Responding was extinguished and the mice tested for cue- and cocaine-primed reinstatement. Separate groups of mice were trained to respond for decreasing doses of cocaine (0.25, 0.125, 0.06 and 0.03 mg/kg). Results No differences were found in acquisition of lever pressing for milk. All genotypes acquired self-administration of cocaine and did not differ in rates of self-administration, dose dependency or reinstatement. However, whilst WT and HT mice showed a dose-dependent increase in lever pressing during the cue presentation, KO mice did not. Conclusions Despite a reported absence of sensitisation, motivation to obtain cocaine remains unchanged in KO and HT mice. Reinstatement of cocaine seeking by cocaine and cocaine-paired cues is also unaffected. We postulate that whilst not directly involved in reward perception, the α2-subunit may be involved in modulating the “energising” aspect of cocaine’s effects on reward-seeking

    Computed cardiopulmonography and the idealized lung clearance index, iLCI2.5, in early-stage cystic fibrosis.

    Get PDF
    This study explored the use of computed cardiopulmonography (CCP) to assess lung function in early-stage cystic fibrosis (CF). CCP has two components. The first is a particularly accurate technique for measuring gas exchange. The second is a computational cardiopulmonary model where patient-specific parameters can be estimated from the measurements of gas exchange. Twenty-five participants (14 healthy controls, 11 early-stage CF) were studied with CCP. They were also studied with a standard clinical protocol to measure the lung clearance index (LCI2.5). Ventilation inhomogeneity, as quantified through CCP parameter σlnCl, was significantly greater (P < 0.005) in CF than in controls, and anatomical deadspace relative to predicted functional residual capacity (DS/FRCpred) was significantly more variable (P < 0.002). Participant-specific parameters were used with the CCP model to calculate idealized values for LCI2.5 (iLCI2.5) where extrapulmonary influences on the LCI2.5, such as breathing pattern, had all been standardized. Both LCI2.5 and iLCI2.5 distinguished clearly between CF and control participants. LCI2.5 values were mostly higher than iLCI2.5 values in a manner dependent on the participant's respiratory rate (r = 0.46, P < 0.05). The within-participant reproducibility for iLCI2.5 appeared better than for LCI2.5, but this did not reach statistical significance (F ratio = 2.2, P = 0.056). Both a sensitivity analysis on iLCI2.5 and a regression analysis on LCI2.5 revealed that these depended primarily on an interactive term between CCP parameters of the form σlnCL*(DS/FRC). In conclusion, the LCI2.5 (or iLCI2.5) probably reflects an amalgam of different underlying lung changes in early-stage CF that would require a multiparameter approach, such as potentially CCP, to resolve.NEW & NOTEWORTHY Computed cardiopulmonography is a new technique comprising a highly accurate sensor for measuring respiratory gas exchange coupled with a cardiopulmonary model that is used to identify a set of patient-specific characteristics of the lung. Here, we show that this technique can improve on a standard clinical approach for lung function testing in cystic fibrosis. Most particularly, an approach incorporating multiple model parameters can potentially separate different aspects of pathological change in this disease

    Buckling Instabilities of a Confined Colloid Crystal Layer

    Full text link
    A model predicting the structure of repulsive, spherically symmetric, monodisperse particles confined between two walls is presented. We study the buckling transition of a single flat layer as the double layer state develops. Experimental realizations of this model are suspensions of stabilized colloidal particles squeezed between glass plates. By expanding the thermodynamic potential about a flat state of N N confined colloidal particles, we derive a free energy as a functional of in-plane and out-of-plane displacements. The wavevectors of these first buckling instabilities correspond to three different ordered structures. Landau theory predicts that the symmetry of these phases allows for second order phase transitions. This possibility exists even in the presence of gravity or plate asymmetry. These transitions lead to critical behavior and phases with the symmetry of the three-state and four-state Potts models, the X-Y model with 6-fold anisotropy, and the Heisenberg model with cubic interactions. Experimental detection of these structures is discussed.Comment: 24 pages, 8 figures on request. EF508

    Genome-Scale Methods Converge on Key Mitochondrial Genes for the Survival of Human Cardiomyocytes in Hypoxia

    Get PDF
    BACKGROUND: Any reduction in myocardial oxygen delivery relative to its demands can impair cardiac contractile performance. Understanding the mitochondrial metabolic response to hypoxia is key to understanding ischemia tolerance in the myocardium. We used a novel combination of 2 genome-scale methods to study key processes underlying human myocardial hypoxia tolerance. In particular, we hypothesized that computational modeling and evolution would identify similar genes as critical to human myocardial hypoxia tolerance. METHODS AND RESULTS: We analyzed a reconstruction of the cardiac mitochondrial metabolic network using constraint-based methods, under conditions of simulated hypoxia. We used flux balance analysis, random sampling, and principal component analysis to explore feasible steady-state solutions. Hypoxia blunted maximal ATP (−17%) and heme (−75%) synthesis and shrank the feasible solution space. Tricarboxylic acid and urea cycle fluxes were also reduced in hypoxia, but phospholipid synthesis was increased. Using mathematical optimization methods, we identified reactions that would be critical to hypoxia tolerance in the human heart. We used data regarding single-nucleotide polymorphism frequency and distribution in the genomes of Tibetans (whose ancestors have resided in persistent high-altitude hypoxia for several millennia). Six reactions were identified by both methods as being critical to mitochondrial ATP production in hypoxia: phosphofructokinase, phosphoglucokinase, complex II, complex IV, aconitase, and fumarase. CONCLUSIONS: Mathematical optimization and evolution converged on similar genes as critical to human myocardial hypoxia tolerance. Our approach is unique and completely novel and demonstrates that genome-scale modeling and genomics can be used in tandem to provide new insights into cardiovascular genetics

    An unusual clinical presentation resembling superior vena cava syndrome post heart surgery

    Get PDF
    BACKGROUND: An unusual sequence of post operative events heralded by hemodynamic deterioration followed by dyspnea and rapidly progressive dilatation of superficial neck and facial veins, resembling a superior vena cava syndrome, two days post surgical resection of filamentous aortic valve masses, closure of a patent foramen ovale, and performance of a modified Maze procedure for atrial fibrillation in a patient that presented with transient neurologic findings is presented. CASE PRESENTATION: Although both clinical findings and hemodynamic derangements completely resolved following tricuspid valve repair aimed to correct the new onset severe tricuspid regurgitation noted post operatively; a clear mechanism was not readily obvious and diagnostic testing data somewhat conflictive. We present a careful retrospective examination of all clinical data and review possible clinical entities that could have been implicated in this particular case and recognize that transesophageal echocardiographic findings were most useful in identifying the best course of action. CONCLUSION: After reviewing all clinical data and despite the inconclusive nature of test results; the retrospective examination of transesophageal echocardiographic findings proved to be most useful in identifying the best course of action. We postulate that in our case, resolution of the suspected pulmonary embolism with anticoagulation and reestablishment of a normal right ventricular geometry with tricuspid valve repair worked in unison in restoring normal hemodynamics and resolving both dyspnea and venous dilatation

    When to Start Antiretroviral Therapy

    Get PDF
    The question of when to start combination antiretroviral therapy for treatment-naïve patients has always been controversial. This is particularly true in the current era, with major guidelines recommending very different treatment strategies. Despite a lack of clarity regarding the optimal time to begin therapy, there has been a recent shift toward earlier initiation. This more aggressive approach is driven by several observations. First, effective viral suppression with therapy can prevent non-AIDS-related morbidity and mortality. Second, therapy can prevent irreversible harm to the human immune system. Third, therapy may prevent transmission of HIV to others, and thus have a potential public health benefit. For patients who are motivated and willing to initiate early treatment, the collective benefits of early therapy may outweigh the well-documented risks of antiretroviral medications

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Association of childhood trauma with cognitive function in healthy adults: a pilot study

    Get PDF
    BACKGROUND: Animal and human studies suggest that stress experienced early in life has detrimental consequences on brain development, including brain regions involved in cognitive function. Cognitive changes are cardinal features of depression and posttraumatic stress disorder. Early-life trauma is a major risk factor for these disorders. Only few studies have measured the long-term consequences of childhood trauma on cognitive function in healthy adults. METHODS: In this pilot study, we investigated the relationship between childhood trauma exposure and cognitive function in 47 healthy adults, who were identified as part of a larger study from the general population in Wichita, KS. We used the Cambridge Neuropsychological Test Automated Battery (CANTAB) and the Wide-Range-Achievement-Test (WRAT-3) to examine cognitive function and individual achievement. Type and severity of childhood trauma was assessed by the Childhood Trauma Questionnaire (CTQ). Data were analyzed using multiple linear regression on CANTAB measures with primary predictors (CTQ scales) and potential confounders (age, sex, education, income). RESULTS: Specific CTQ scales were significantly associated with measures of cognitive function. Emotional abuse was associated with impaired spatial working memory performance. Physical neglect correlated with impaired spatial working memory and pattern recognition memory. Sexual abuse and physical neglect were negatively associated with WRAT-3 scores. However, the association did not reach the significance level of p < 0.01. CONCLUSIONS: Our results suggest that physical neglect and emotional abuse might be associated with memory deficits in adulthood, which in turn might pose a risk factor for the development of psychopathology
    corecore