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Abstract 32 

Background: Any reduction in myocardial oxygen delivery relative to its demands can 33 

impair cardiac contractile performance. Understanding the mitochondrial metabolic 34 

response to hypoxia is key to understanding ischemia tolerance in the myocardium. 35 

We employed a novel combination of two genome-scale methods to study key 36 

processes underlying human myocardial hypoxia tolerance. In particular, we 37 

hypothesised that computational modelling and evolution would identify similar 38 

genes as critical to human myocardial hypoxia tolerance. Methods & Results: We 39 

analysed a reconstruction of the cardiac mitochondrial metabolic network using 40 

constraint-based methods, under conditions of simulated hypoxia. We used flux 41 

balance analysis, random sampling and principle components analysis to explore 42 

feasible steady-state solutions. Hypoxia blunted maximal ATP (-17%) and haeme (-43 

75%) synthesis and shrank the feasible solution space. TCA and urea cycle fluxes 44 

were also reduced in hypoxia, but phospholipid synthesis was increased. Using 45 

mathematical optimization methods, we identified reactions that would be critical to 46 

hypoxia tolerance in the human heart. We used data regarding SNP frequency and 47 

distribution in the genomes of Tibetans (whose ancestors have resided in persistent 48 

high-altitude hypoxia for several millennia). Six reactions were identified by both 49 

methods as being critical to mitochondrial ATP production in hypoxia: 50 

phosphofructokinase, phosphoglucokinase, Complex II, Complex IV, aconitase and 51 

fumarase. Conclusions: Mathematical optimization and evolution converged on 52 

similar genes as critical to human myocardial hypoxia tolerance. Our approach is 53 

unique and completely novel and demonstrates that genome-scale modelling and 54 

genomics can be used in tandem to provide new insights into cardiovascular genetics. 55 
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Introduction 56 

Systems biology uses mathematical and computational methods to describe and 57 

explore complex biological networks. An important recent trend in systems biology 58 

has been the development and application of ‘constraint-based modelling’ 1. 59 

Constraint-based modelling provides three very significant advantages over traditional 60 

mathematical approaches for the study of large and complex biochemical systems. 61 

First, very large models (up to thousands of reactions) can be accommodated. Thus 62 

the entire metabolic network of a mitochondrion (for example) can be modelled. 63 

Second, precise descriptions of the behaviour of each enzyme in the system (i.e. rate 64 

laws) are not required. Finally, detailed information regarding the activity of a single 65 

protein (for example, whether an enzyme is allosterically modified or not) is not 66 

necessary. Thus unlike traditional ‘kinetic’ models, constraint-based models do not 67 

rely on, nor do they require, detailed knowledge of an enzyme’s phosphorylation 68 

status (for example), nor the abundance of substrates and products.  69 

 70 

Constraint-based modelling is able to confer these advantages because the underlying 71 

models and assumptions are simple. The basic unit for constraint-based modelling is a 72 

network model, similar to the London Underground map. In the case of a biochemical 73 

network, this is constructed using 1) the known presence or absence of reactions 74 

based on genomic, proteomic or biochemical data; and 2) the known (species-75 

specific) stoichiometry of all the chemical reactions included in the network. To this 76 

basic model are added a series of ‘constraints’ (from which the method derives its 77 

name), including reaction directionality, mass and charge balancing and absolute 78 

limits to metabolite uptake and excretion. Unlike traditional enzyme kinetic 79 

parameters (e.g. Michaelis-Menten midpoints), many of the underlying assumptions 80 
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in constraint-based models are robust to variations in physical environment (such as 81 

temperature). However, constraint-based models are not able to simulate the exact 82 

behaviour of a biochemical system. Instead, by keeping the underlying assumptions as 83 

simple and robust as possible, they attempt to mirror the constraints which the true 84 

network faces in vivo. Nevertheless, one can predict the most likely behaviour of the 85 

system (using Monte Carlo methods) or predict the behaviour of the network at an 86 

optimum value of some assumed ‘physiological objective’. A more detailed 87 

description of the approach can be found in the Methods and Supplemental Materials 88 

of the present manuscript, and in many excellent reviews 1-4. Regarding its utility: 89 

constraint-based modelling, using genome-scale metabolic networks, has been used to 90 

successfully predict the metabolic signatures of human inherited diseases 5-8, and to 91 

permit the in silico design of tumour-specific toxins 9 and aid in the design of 92 

microbial strains for the purposes of metabolic engineering 10.  93 

 94 

Myocardial ischemia and hypoxia, whether cause or consequence, are common 95 

features of the failing heart; understanding the mitochondrial response to hypoxia is 96 

key to understanding ischemia tolerance. Myocardial hypoxia can be due to any 97 

number of factors, but is most commonly caused by coronary artery or microvascular 98 

heart disease, exacerbated by increased oxygen demand from ventricular remodelling. 99 

Ischaemic heart disease remains the leading cause of death in the developed world; 100 

therefore gaining new insights into the mechanisms whereby heart cells can survive 101 

hypoxia of any duration is a matter of considerable importance.  102 

 103 

Hypoxia, consequent upon a reduction in barometric pressure, is also a consistent 104 

environmental challenge for human populations at high altitude, where it has led to a 105 
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robustly detectable degree of genetic and phenotypic divergence over evolutionary 106 

timescales 11, 12. Thus human populations at high altitude offer a unique opportunity to 107 

study the genetic response to hypoxia. We used a novel combination of genome-scale 108 

modelling, mathematical optimization and genome-wide analysis of single nucleotide 109 

polymorphisms (SNPs) in humans to study the response of cardiac mitochondria to 110 

hypoxia. In particular, we sought to test our hypothesis that if evolution is an 111 

optimization process, then mathematical optimization methods, when applied to a 112 

metabolic model, would converge on the same set of reactions, critical to 113 

environmental (in this case hypoxic) performance. By comparing information from 114 

natural (evolution) and mathematical optimization methods we sought to identify key 115 

genes and reactions that underlie cardiac tolerance to hypoxia.  116 

  117 



 6 

Methods 118 

The reconstruction of the human cardiac mitochondrial metabolic network from 119 

proteomic and biochemical data was described previously 13. Briefly, proteomic and 120 

transcriptomic data were used to derive an organelle ‘metabolic parts list’ (i.e. a list of 121 

all metabolic proteins known to be associated with a cardiac mitochondrion). These 122 

parts were ‘connected’ by their species-specific stoichiometric chemical equations. 123 

The draft reconstruction was extensively tested and manually curated. The final model 124 

used herein comprised 195 reactions, 235 metabolites and 25 exchange reactions (for 125 

a full description see 13, 14 and the Supplementary Materials). The exchange reactions 126 

did not represent genuine biochemical reactions, but instead described the exchanges 127 

that were necessary between the network and its environment so that a steady-state 128 

could be achieved. Having reconstructed the network, a series of limits or ‘constraints’ 129 

were added, all of which constrained the upper and lower limits of metabolite 130 

exchange of the model with its environment (e.g. oxygen, glucose). These constraints 131 

are in Supplementary Table 1 and represent maximum and minimum flux rates in 132 

human heart mitochondria in vivo. To simulate hypoxia, we reduced the upper 133 

constraint on oxygen uptake in the model to 25% of baseline values (normoxia), from 134 

39.1 μM min-1 (g mitochondrial protein)-1 (henceforth shortened to U) to 9.775 U. Our 135 

choice of simulating severe hypoxia was motivated by an intention to highlight any 136 

effects; however, it is worth noting that complete anoxia can occur in regions of 137 

ischemic myocardium (e.g. during acute myocardial infarction).  138 

 139 

Computational analysis of network models rarely leads to a single set of predicted 140 

fluxes. Instead, methods are used to analyze the possible combinations of fluxes that 141 

allow a steady-state, given the applied constraints. The solutions together are termed 142 
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the feasible steady-state solution space. Alternatively, one can use linear optimization 143 

to compute a set of fluxes that optimize the value of a given objective function, an 144 

approach typically referred to as flux balance analysis (FBA). For example, this 145 

method would return a set of fluxes that correspond to the highest possible rate of 146 

ATP production by the network, if ATP production was the objective function. When 147 

conducting FBA, we optimized the mitochondrial network for three objective 148 

functions (phospholipid, haeme and ATP synthesis) 13. Alternate optimal solutions 149 

(i.e. other sets of fluxes that also gave an optimal objective) were accounted for via 150 

flux variability analysis (see below). We also studied the optimization of all three 151 

objectives simultaneously (see Supplementary Materials for details). This method 152 

comprises placing the objective functions under study into hierarchical order (for 153 

example, haeme biosynthesis then phospholipid biosynthesis then ATP synthesis). 154 

The network is optimized for the first objective, then optimized for the second with 155 

the first held at optimal value and so forth.  156 

 157 

We used two computational methods to identify reactions that are critical to hypoxia 158 

tolerance in the mitochondria metabolic network – shadow prices 15 and flux spans 16. 159 

Shadow prices have been used in metabolic network analysis before 15, 17. Shadow 160 

prices (also known as Lagrange multipliers) are measures of the degree to which the 161 

value of the objective function is affected by the availability of a particular resource. 162 

For example, if ATP synthesis were the objective function, a shadow price of 1.0 for 163 

glucose (for example) would indicate that a 1 unit increase in glucose availability 164 

would lead to an equivalent increase in ATP synthesis. A shadow price of 2.0 would 165 

indicate that a unit increase in the availability of glucose would result in a two unit 166 

increase in ATP synthesis, and so forth. We reasoned therefore that reactions for 167 
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which metabolites with large, positive shadow prices were either substrates or 168 

products, would be crucial to hypoxic performance (at least, for the objective function 169 

under investigation). To assess the likelihood that our method had outperformed 170 

chance, we used simple permutation testing.  171 

 172 

Our second approach was to use flux spans. Using flux variability analysis 18 we 173 

computed the range of values that flux through each reaction could take at an 174 

optimum (computed using FBA). Taken together, these ranges delineate the set of 175 

alternate optimal solutions (i.e. different sets of fluxes that result in the same optimal 176 

value of the objective) 18. By calculating the difference between the upper and lower 177 

feasible fluxes we derived a flux span for each reaction. Here we express these as a 178 

relative ratio. Hence a reaction with flux = 10 U and with the lower and upper feasible 179 

fluxes being 8 and 12 U respectively would have a relative flux span of 0.4 (or 40%). 180 

We reasoned that reactions with the smallest relative flux spans would be critical to 181 

hypoxia tolerance and hypoxic performance. Again, we used permutations to estimate 182 

the probability that our method had outperformed chance alone.  183 

 184 

We used data from a genome-wide allelic differentiation scan (GWADS) comparing 185 

SNP frequencies of Tibetans (n = 35) residing at 3200-5000 m, with 84 individuals 186 

from the founder population. Subjects were recruited from three distinct regions of 187 

China: the North Western region of Yunnan province, Mag Xiang and Zhaxizong 188 

Xiang (both in the Tibet Autonomous Region). Genotypic data from the HapMap 189 

Phase III Han population were also included. These data have been analyzed 190 

previously11 and full details can be found in this earlier publication. Each gene was 191 

assigned a genome-wide p-value that serves as an estimate of the degree of selective 192 
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pressure applied to that gene (through differences in SNP frequency). Details 193 

regarding the calculation of these p-values can also be found elsewhere 11. We 194 

extracted the p-values corresponding to the genes in our model and ranked genes by 195 

smallest GWADS p-value first, producing a list of nuclear-encoded mitochondrial 196 

genes with an accompanying measure of selective pressure in humans living in 197 

persistent hypoxia.  198 

 199 

Where appropriate, means and standard deviations are given. However, modelling 200 

results are often a single datum point (e.g. differences in optimal ATP synthesis rate, 201 

determined using flux balance analysis, under hypoxia and normoxia) and are 202 

therefore given as such. 203 

 204 

205 
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Results  206 

We optimized the network for three physiological ‘targets’ (objective functions) - 207 

ATP, haeme and phospholipid biosynthesis 13 – using flux balance analysis (FBA) 1. 208 

Hypoxia reduced the optimal ATP synthesis rate by 13%, from 45.8 to 36.6 U. Figure 209 

1 shows a quantized heatmap of the accompanying differences in flux. There were 210 

reductions in flux through many reactions comprising the TCA cycle and oxidative 211 

phosphorylation. There were also reductions in flux through most reactions 212 

comprising fatty acid uptake, transport, activation and oxidation, although some were 213 

maintained due to the imposition of a minimum uptake rate (this is a physiological 214 

constraint imposed by the ability of fatty acids to diffuse freely across membranes). 215 

Glycolytic rates were similar, which was expected as maximal ATP synthesis was the 216 

objective. The flux through multiple reactions required for phospholipid biosynthesis 217 

were increased and the demand reaction was activated in hypoxia. To ensure that the 218 

degree of simulated hypoxia affected our results quantitatively but not qualitatively, 219 

we performed additional flux balance analysis experiments at various intermediate 220 

oxygen uptake rates. The results are in Supplementary Figure 1. Briefly, maximal 221 

ATP synthesis was progressively reduced by increasing hypoxia. Consistent with our 222 

interpretation, phospholipid biosynthesis was not activated until O2 uptake dropped 223 

below a critical level, at which point a ‘sink’ for fatty acid carbons was required. 224 

There was no evidence of qualitative shifts in carbon flux as maximal O2 uptake rate 225 

was progressively reduced. 226 

 227 

Haeme synthesis was blunted by 75% in hypoxia (hypoxia: 0.650 vs. normoxia: 2.44 228 

U). The pattern of flux differences between the optimized network in normoxia and 229 

hypoxia was similar to that with ATP synthesis as the objective. Flux through 230 
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reactions comprising the TCA cycle, oxidative phosphorylation, the urea cycle and 231 

haeme synthesis itself were suppressed. There were increases in long-chain (C20:4 232 

and C22:6) activation and an increase in phospholipid biosynthesis. A heatmap of 233 

differences in flux across the network under these conditions (haeme biosynthesis as 234 

the objective function in hypoxia vs. normoxia) is given in Supplementary Figure 2. 235 

However, when phospholipid biosynthesis was the objective it was unchanged by 236 

oxygen restriction, at 22.8 U.  237 

 238 

We then performed multiple objective analyses with three different hierarchies of 239 

objective functions. 1. ATP > haeme > phospholipid: In normoxia, and with ATP 240 

synthesis fixed at its optimal value of 45.8 U, haeme and phospholipid synthesis were 241 

eliminated. In hypoxia, with ATP synthesis fixed at its optimal value of 36.6 U, 242 

haeme synthesis was still eliminated; however, optimized phospholipid biosynthesis 243 

was now non-zero, although reduced ~100-fold at 0.265 U. 2. Haeme > phospholipid 244 

> ATP: In normoxia, with haeme biosynthesis at its optimal rate of 2.44 U, both 245 

phospholipid and ATP synthesis were abolished. In hypoxia, with haeme biosynthesis 246 

at 0.650, phospholipid biosynthesis was possible and optimized to 0.867 U; ATP 247 

synthesis was abolished. 3. Phospholipid > haeme > ATP: As maximal phospholipid 248 

biosynthesis was unaffected by hypoxia it was fixed at 0.867 U for both conditions 249 

(normoxia/hypoxia). In both normoxia and hypoxia, haeme biosynthesis gained 250 

optimal values the same as those where it was the only objective function considered 251 

(normoxia: 2.44 U vs. hypoxia: 0.650 U).  In normoxia, ATP biosynthesis was 252 

subsequently limited to 8.85 U; in hypoxia it was reduced far less, to 19.3 U. A 253 

summary of all the optima is in Supplementary Table 2. 254 

 255 
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We next used uniform random sampling 19, a method that characterizes the steady-256 

state solution space without requiring an objective function. Figure 1b shows a 257 

quantized heatmap of differences in median flux. Consistent with the FBA results, 258 

fluxes through reactions comprising oxidative phosphorylation, the TCA cycle and 259 

fatty acid metabolism were reduced in hypoxia. Without the requirement to maximize 260 

ATP synthesis in normoxia that was elsewhere imposed by FBA, glycolytic flux 261 

increased in hypoxia. The heatmap shows a reduction in flux through lactate 262 

dehydrogenase and the lactate transporter; however, this represents a reversal in flux, 263 

from uptake to efflux. Also noteworthy is a reduction in urea cycle flux in hypoxia. 264 

 265 

We analysed the sampled data using principal components analysis (PCA), allowing 266 

us to visualize patterns of change. We modelled the sampled data together and found 267 

that five components captured 65% of the total variance. When plotted, the scores on 268 

these components revealed that hypoxia substantially reduced the dimensions of the 269 

solution space, reducing the flexibility of the metabolic network even though the 270 

dimensions of the space were the same. This was especially apparent in principal 271 

components 1 and 2 (Figure 2), with principal component 1 being dominated by 272 

reactions related to gas exchange, the TCA cycle and oxidative phosphorylation and 273 

principal component 2 being dominated by reactions related to iron transport and 274 

haeme biosynthesis.  275 

 276 

Given that optimal phospholipid biosynthesis was unaffected by oxygen restriction, 277 

we continued by studying those metabolites and reactions that limited optimal ATP 278 

and haeme biosynthesis in the mitochondrial metabolic network under hypoxia. We 279 

first computed shadow prices for all metabolites in the model when optimising the 280 
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network for either ATP or haeme synthesis. Table 2 gives metabolites with the largest 281 

positive shadow prices and the corresponding twenty discrete reactions for each 282 

objective function. Three classes of metabolite (and reaction) dominated: long-chain 283 

(>20C) fatty acid transport, glycolysis and haeme biosynthesis. When optimising for 284 

ATP synthesis, the largest shadow prices were several-fold larger than when 285 

optimising for haeme synthesis (e.g. 4.0 for cytosolic fructose diphosphate, fdp(c), vs. 286 

1.2 for cytosolic arachidonic acid, c206(c)). When optimizing the network with ATP 287 

synthesis as the objective function, the metabolites with large positive shadow prices 288 

were mainly related to glycolysis, oxidative phosphorylation and the TCA cycle. 289 

 290 

We next computed flux spans, using flux variability analysis. The reactions with the 291 

smallest relative flux spans when optimizing the network for either haeme or ATP 292 

synthesis are given in Table 3. As with shadow prices, the magnitude of the parameter 293 

(in this case, relative flux span) was several fold different when optimizing ATP vs. 294 

haeme synthesis; in both cases the difference (larger shadow prices and smaller flux 295 

spans) was consistent with ATP synthesis being more tightly restricted by hypoxia. 296 

Interestingly, reactions related to oxidative phosphorylation both had narrow flux 297 

spans regardless of whether ATP or haeme synthesis were the objectives. In particular, 298 

complex IV of the respiratory chain was ranked in the top two (Table 3). Perhaps 299 

unsurprisingly, reactions related to proto-haeme synthesis and iron transport also had 300 

small relative flux spans when optimizing for haeme synthesis. When optimizing the 301 

network for ATP synthesis, reactions from the TCA cycle and glycolysis were highly 302 

represented. 303 

 304 

We generated a complete list of nuclear-encoded mitochondrial genes with a 305 
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corresponding measure of selective pressure at high altitude. The twenty ‘most 306 

selected’ genes (i.e. smallest p-value) are in Table 1. Using permutations, we assessed 307 

the likelihood that mathematical optimization had outperformed chance when 308 

predicting genes under pressure. When conducting shadow price analysis with ATP 309 

synthesis as the objective, we selected the 16 metabolites with the largest positive 310 

shadow price corresponding to 20 discrete reactions shown in Table 2. Of these 20 311 

reactions, two (phosphofructokinase (PFK) and phosphoglycerate kinase (PGK)) 312 

carried flux and corresponded to genes in Table 1. However, permutation testing 313 

suggested that random selections of 16 metabolites would equal or outperform our 314 

modelling approach most of the time (p = ~0.860). We observed that two of the only 315 

three metabolites with shadow prices of 3 or greater when optimizing the network for 316 

either objective (cytosolic fructose 6-phosphate and fructose diphosphate, f6p(c) and 317 

fdp(c) respectively in Table 2) are both substrate and product for PFK, the most 318 

‘heavily selected’ gene in Table 1. We next compared the reactions highlighted by 319 

shadow price analysis whilst optimizing the network for haeme synthesis. Three 320 

reactions were common with those in Table 1: hydroxymethylbilane synthase 321 

(HMBS), porphobilinogen synthase (PPBNGS) and phosphoglycerate kinase (PGK). 322 

Once again, permutations suggested that shadow pricing had not outperformed chance 323 

when identifying genes under pressure. 324 

 325 

We used a similar approach to assess the performance of flux span analysis. Table 3 326 

shows that flux span analysis identified three (haeme synthesis) and six (ATP 327 

synthesis) reactions that were common with those that were the most heavily selected 328 

genes in Table 1. With ATP synthesis as the objective, we used permutation testing to 329 

assess whether modelling had outperformed chance when predicting genes under 330 
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pressure. Random selections only matched flux span analysis 1675 out of 100000 331 

times, offering evidence that this approach had outperformed chance at p < .05.  332 

 333 

We repeated this process with haeme synthesis as the objective function. Using 334 

100000 permutations, random selection matched the model performance 335 

approximately half the time (p = ~0.525). Hence using flux span analysis with haeme 336 

as the objective had not outperformed chance.337 
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Discussion 338 

Myocardial hypoxia can be either acute or chronic and occurs whenever oxygen 339 

delivery is insufficient to meet the needs of the contracting myocardium. This can be 340 

due to any combination of reduced O2-carrying capacity due to anaemia, reduced 341 

haemoglobin saturation (whether environmental or pathological), poor cardiac output 342 

or compromised blood flow due to coronary artery or microvascular heart disease, and 343 

increased oxygen demand associated with stress or structural remodelling (e.g. 344 

ventricular hypertrophy). Ischaemic heart disease remains the leading cause of death 345 

in the developed world. A notable feature of heart failure is that, once left ventricular 346 

dysfunction has been established, patients suffer a relentless apoptotic loss of viable 347 

cardiomyocytes that some investigators believe to be due to repeated, transient 348 

ischaemic and hypoxic events 20. Therefore understanding the mechanisms whereby 349 

heart cells can survive either transient or sustained hypoxia and ischaemia is a matter 350 

of considerable importance. Here we present an entirely new approach to this question 351 

using systems biology methods that encompass genomics, metabolic modelling and 352 

mathematical optimization. 353 

 354 

We first studied the effect that hypoxia had on the solution space (the set of all 355 

feasible fluxes) of the reconstructed cardiac mitochondrial metabolic network using 356 

two complementary methods – optimization (FBA) and Monte Carlo sampling. 357 

Optimization requires an objective function; in keeping with previous work we 358 

studied three objectives that are central to mitochondrial function: the synthesis of 359 

ATP, haeme and mixed phospholipids 13. Although maximal phospholipid synthesis 360 

was unaffected by hypoxia, both haeme and ATP synthesis were reduced (by 75% and 361 

13% respectively). The reduction in maximal ATP synthesis was accompanied by 362 
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reductions in TCA cycle flux, oxidative phosphorylation and fatty acid uptake and 363 

processing but a seemingly paradoxical increase in phospholipid biosynthesis. 364 

 365 

The degree to which maximal haeme synthesis was blunted in hypoxia was striking. 366 

This 75% loss of proto-haeme synthesis capacity was accompanied by many of the 367 

metabolic features observed when optimizing ATP production in hypoxia. Haeme is a 368 

major component of haemoglobin, itself substantially increased in response to 369 

hypoxia to enhance systemic oxygen transport 21. Thus network stoichiometry forms a 370 

constraint to haeme biosynthesis that may partly define the speed with which haeme 371 

can be synthesized in hypoxia. Non iron-deficient anaemia is a common feature in 372 

heart failure patients, yet its aetiology is unknown 22. Furthermore, many studies have 373 

shown that reduced haemoglobin is an independent predictor of risk in heart failure 374 

patients 23, 24, although again the mechanism remains poorly understood. Our 375 

simulations suggest that hypoxia itself can cause significant reductions in proto-376 

haeme synthesis, both in the heart and elsewhere, and that hypoxia of any kind could 377 

lead to a vicious cycle of blunted haeme synthesis, reduced O2-carrying capacity in 378 

blood and subsequently worsened hypoxaemia. Furthermore, in cultured human 379 

neurons, haeme deficiency causes a decrease in (haeme-containing) complex IV 380 

(cytochorome c oxidase) and activation of nitric oxide synthase 25. Given that 381 

complex IV release is a key component of the p53 apoptotic cascade 26, this suggests 382 

an intriguing new avenue for investigations into hypoxia-induced myocyte apoptosis. 383 

 384 

We studied the effect on mitochondria of forcing them to balance competing 385 

objectives in hypoxia. When ATP production was given hierarchical ‘superiority’ (as 386 

is almost certainly the case in vivo), haeme synthesis was completely abolished in 387 
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normoxia and hypoxia. Thus haeme and ATP synthesis compete for the same 388 

resources; quite moderate reductions in O2 supply, coupled with increases in ATP 389 

demand, might lead to profound reductions in haeme synthesis capacity due to 390 

stoichiometric constraints in the metabolic network. Interestingly, phospholipid 391 

biosynthesis was abolished in normoxia under this hierarchy but was active in 392 

hypoxia. This was likely due to competition with ATP synthesis for lipids; in hypoxia, 393 

ATP synthesis was diminished freeing up lipids for phospholipid synthesis. 394 

 395 

We next studied the set of feasible solutions using random sampling. Multiple random 396 

samples of the solution space allow the generation of probability density functions for 397 

flux through every reaction; the most probable value can often predict the measured in 398 

vivo rate 14. As with linear optimization (FBA) we observed reductions in TCA cycle 399 

and oxidative phosphorylation reactions, in addition to a reduction in urea cycle flux. 400 

This last is intriguing because flux through arginosuccinate synthetase (ASS) was 401 

decreased in simulated hypoxia. ASS been elsewhere been reported as a target of the 402 

von Hippel-Lindau tumour suppressor gene (VHL) 27, an inverse regulator of HIF-1. 403 

Manipulation of VHL expression led to corresponding changes in ASS levels in 404 

RCC10 renal cell carcinoma cells.  405 

 406 

Once again we observed that many of the reactions required for phospholipid 407 

biosynthesis were increased and the biosynthesis reaction itself was activated in 408 

hypoxia. Without this redirection of fatty acid flux, the imposition of hypoxia, 409 

combined with minimum uptake rates for fatty acids, would have led to an 410 

accumulation of unoxidized fatty acids in the model and a loss of homeostasis. 411 

Cardiac mitochondria face an identical challenge in vivo and redirect fatty acids to 412 
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storage (away from oxidation) when ischaemic 28. Similarly, Langendorff-perfused 413 

hearts exposed to acute hypoxia increase phospholipid biosynthesis to maintain lipid 414 

homeostasis 29. We also observed an increase in glycolytic flux (Figure 1B). 415 

 416 

Overall, the pattern of change in metabolic flux in our simulations was strikingly 417 

consistent with experimental observations of cellular responses to hypoxia, including 418 

the reduction in flux through pyruvate dehydrogenase (PDHm) in vivo that is brought 419 

about by modulation of pyruvate dehydrogenase kinase 30. It is interesting to note that 420 

the reduction in flux through PDHm in our simulations directly resulted from network 421 

stoichiometry, without any additional explanation or control. While the notion that 422 

glycolytic flux is increased in hypoxia is certainly not new, altered (particularly 423 

increased) lipid biosynthesis in response to hypoxia is a less often considered 424 

component of hypoxia tolerance. Previous investigators have reported both increased 425 

29, 31 and decreased 32 lipid synthesis in hypoxia in model systems. These 426 

discrepancies may be due to differences in isotope labelling strategy (e.g. acetate vs. 427 

glycerol vs. palmitate) or outcome measure. However, there is no question that lipids 428 

accumulate in the heart in response to hypoxia and ischaemia 28. It should be noted 429 

that the details of whole heart lipid-handling in hypoxia and/or ischemia may be 430 

different to the mitochondrial response considered in isolation. It is interesting also 431 

that lipotoxicity – defined as a chronic mismatch between oversupply of acetyl-CoA 432 

from lipid breakdown and its subsequent mitochondrial oxidation – is a stoichiometric 433 

disorder and can be as readily caused by impaired oxidative phosphorylation (for 434 

example, by hypoxia) as lipid oversupply. The consistency of our simulations with 435 

experimental observations reinforced to us the notion that our methods were both 436 

robust and relevant. 437 
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 438 

We sought to test whether mathematical optimization had converged on the same 439 

reactions that human evolution had identified as being critical to optimal hypoxic 440 

function. We used data from a GWADS scan comparing SNP frequencies of Tibetans 441 

residing at 3500 m (and whose ancestors have ‘lived high’ for over 10,000 years 33) 442 

with individuals from the HapMap Phase III Chinese Han sample, who are closely 443 

related but have resided at sea level throughout 11. Tibetans were ideal for this study 444 

because, despite systemic adjustments (for example, increased breathing rates), they 445 

continue to have lower arterial oxygen content than sea-level dwellers 34. 446 

 447 

It is interesting that the largest shadow prices were recorded when optimizing the 448 

mitochondrial metabolic network for ATP synthesis in hypoxia. This suggests that, 449 

even in the case of competing objectives, increasing the supply of these metabolites 450 

would be especially advantageous when oxygen supply is limited (either by 451 

environment or pathology). The metabolite with the largest shadow price in any 452 

analysis we conducted was fructose diphosphate, a product of phosphofructokinase 453 

(PFK). However, permutation testing failed to support the notion that shadow prices 454 

and evolution had converged on similar reactions. 455 

 456 

The results gained by examining flux spans were more compelling. Flux spans are the 457 

range of values within which a reaction rate can lie at a computed optimum. We 458 

reasoned that reactions with narrow flux spans would be under greater selective 459 

pressure. We generated a list of reactions with the smallest flux spans (yet which 460 

carried flux) and compared these with the SNP data. When we optimized for ATP 461 

synthesis, the results supported the notion that mathematical optimization and 462 
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evolution had converged on similar reactions (where 6/20 reactions were common 463 

between the two selections). The common reactions selected by flux span analysis and 464 

evolution were related to haeme synthesis (although only when optimizing for haeme 465 

synthesis), glycolysis (PFK, PGK), the TCA cycle (aconitase and fumarase) and 466 

oxidative phosphorylation (Complexes II and IV). We propose that our combined 467 

method has identified reactions that are especially important in maintaining or 468 

increasing mitochondrial ATP synthesis in the hypoxic heart. This view is supported 469 

by the existing literature. For example, it was recently reported that mice exposed to 470 

three weeks of normobaric hypoxia had reduced Complex II, IV and aconitase activity 471 

in cardiac mitochondria 35 while fumarate accumulation leads to ‘pseudo-hypoxic’ 472 

activation of HIF-1 36, suggesting that many of the same reactions highlighted here 473 

indeed have important roles in hypoxic adaptation and, hence, survival. Our combined 474 

approach also yielded an unexpected benefit: Computational analysis was able to 475 

provide suggestions as to whether genes were under positive or negative selective 476 

pressure (an important distinction to which traditional genome-wide analytical 477 

techniques are blind). 478 

 479 

A final note regarding PFK: basic biochemistry textbooks all highlight the importance 480 

of PFK as a key regulatory step in glycolysis (e.g. page 444 in 37). Yet there is a 481 

tautology here: PFK is heavily regulated biologically (for example, by ATP/AMP, 482 

fructose 2,6-bisphosphate 37 etc.). However its heavy regulation is evidence for, not an 483 

explanation of, its importance. We note that in our simulations, using multiple 484 

objectives and alternative analytical strategies, PFK was repeatedly highlighted as 485 

being an important determinant of the objective. Our model contained no information 486 

whatsoever regarding biological regulation (for example, allosteric modulation by 487 
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other small molecules). In other words, our simulations suggest that PFK is important 488 

because it occupies a critical point in the metabolic network due to network topology 489 

and nothing more. By extension, this protein is likely to be under strong evolutionary 490 

selective pressure in many environments, leading to complex phenotypic properties. 491 

Once again this was supported in the genetic data, at least in hypoxia. 492 

 493 

Limitations 494 

Our main hypothesis - that evolution and mathematical optimization would converge 495 

on similar targets – was supported. In so doing we generated a list of genes that the 496 

two methods independently highlighted as potentially important for hypoxic survival. 497 

Although we believe that the nature of our combined approach adds additional 498 

support to the significance of these genes, we wish to stress that genes identified by 499 

any genome-wide method should be treated as ‘candidates’ only. Direct experimental 500 

evidence will always be required to clarify the function of each. Of course, for some 501 

of the genes identified by our approach, overwhelming evidence already exists 502 

confirming their importance (for example, pyruvate dehydrogenase 30, 38, 39).  503 

 504 

A second limitation relates to possible differences in the Han vs. Tibetan environment 505 

beyond simply altitude (e.g. diet and temperature). Several points are pertinent: 506 

1. Although temperatures may differ between the two locations, most very high 507 

altitude populations descend lower in winter; 508 

2. Diet may differ; however many essential elements (reliance on vegetables and use 509 

of rice) are similar; 510 
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3. Multiple studies have utilized the Han vs Tibetan genome comparison. All have 511 

found the same primary hit (EPAS1), which is a gene regulating expression of a 512 

hypoxia-responsive transcription factor;  513 

4. The candidates in the present study were chosen because computational analysis of 514 

a separate network model suggested their role in hypoxia. This makes it more likely 515 

that this was indeed the cause and is, potentially, another benefit of our approach.  516 
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Table 1: Nuclear genes encoding mitochondrial proteins: the twenty ‘most selected’ (i.e. 

smallest GWADS p-values) in Tibetan high-altitude natives  

Entrez ID Gene name GWADS min P Reaction 

5230 'PGK1' 0.000427922 'PGK' 

5211 'PFKL' 0.000562071 'PFK' 

4696 'NDUFA3' 0.001056733 'NADH2-u10m' 

34 'ACADM' 0.002100322 All ‘FAOX’ 

435 'ASL' 0.003329005 'ARGSL' 

539 'ATP5O' 0.003329005 'ATPS4m' 

27068 'PPA2' 0.004127063 'PPAm' 

2937 'GSS' 0.004425362 'GTHS' 

8170 'SLC14A2' 0.004892165 'UREAt' 

4715 'NDUFB9' 0.005012697 'NADH2-u10m' 

7991 'TUSC3' 0.005679664 'NADH2-u10m' 

3145 'HMBS' 0.006801907 'HMBS' 

10476 'ATP5H' 0.008432045 'ATPS4m' 

4709 'NDUFB3' 0.00856278 'NADH2-u10m' 

50 'ACO2' 0.008803353 'ACONTm' 

2271 'FH' 0.008830507 'FUMm' 

1350 'COX7C' 0.01011429 'CompIVr1' 

4697 'NDUFA4' 0.01011429 'NADH2-u10m' 

210 'ALAD' 0.010792961 'PPBNGS' 

23761 'PISD' 0.011201573 'PSDm' 
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Table 2: Metabolites with the largest positive shadow prices when optimising the 

mitochondrial metabolic network for either haeme or ATP synthesis (and corresponding 

reactions) 

Optimize haeme synthesis Optimize ATP synthesis 

Metabolite 
Shadow 

price 
Reaction(s) Metabolite 

Shadow 

price 
Reaction(s) 

c204(c) 1.30 C204 (1)§, C204t (1) fdp(c) 4 PFK* (1), FBA (2) 

c204coa(c) 1.30 
C204, C204CRN1 (1), 

C204CRN3 (1) 
f6p(c) 3 PFK*, PGI (3) 

c204crn(c) 1.30 
C204CRN1, 

C204CRN2 (1) 
g6p(c) 3 HEX1 (4), PGI, G6PI# 

c204coa(m) 1.30 
C204CRN3, 

FAOXC204*# 
13dpg(c) 2.20 PGK* (5), GAPD (6) 

c204crn(m) 1.30 
C204CRN2, 

C204CRN3 
c204coa(c) 2 

C204 (7), C204CRN1 

(8), C204CRN3 (9) 

pheme(m) 1.00 FCLTm (6) c204crn(c) 2.00 
C204CRN1, 

C204CRN2 (10) 

ppp9(m) 1.00 PPPGOm (6), FCLTm, dhap(c) 2.00 
TPI (11), FBA, 

G3PDm (12) 

pppg9(c) 0.86 
CPPPGO (8), PPPG9tm 

(8) 
g3p(c) 2.00 

FBA, G3PATm (13), 

G3PDm, GAPD, TPI 

pppg9(m) 0.86 PPPG9tm, PPPGOm, glc-D(c) 2.00 GLCt1 (14), HEX1 

cpppg3(c) 0.76 CPPPGO, UPPDC1 (9) c204coa(m) 2.00 
C204CRN3, 

FAOX204*# 

hmbil(c) 0.76 
HMBS* (10), UPP3S 

(11) 
c204crn(m) 2.00 

C204CRN2, 

C204CRN3 

uppg3(c) 0.76 UPP3S, UPPDC1 2pg(c) 1.19 ENO, PGM,  

ppbng(c) 0.19 
HMBS*, PPBNGS* 

(12) 
3pg(c) 1.19 PGK*, PGM 

5aop(c) 0.10 
PPBNGS*, 5AOPtm 

(13) 
pep(c) 1.19 PYK, CITtbm 

5aop(m) 0.10 5AOPtm, ALASm (14) succoa(m) 0.81 
AKGDm, ALASm#, 

OCOAT1m# 

succoa(m) 0.10 
AKGDm (15), 

ALASm, OCOAT1m# 
akg(c) 0.62 

ICDHxm (20), 

ICDHym#, TYRTAm#, 

AKGDm 

13dpg(c) 0.05 
PGK* (16), GAPD 

(17) 
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2pg(c)' 
0.0476

19048 
ENO, PGM,     

13dpg(c) 
0.0476

19048 
PGK*, GAPD    

§Bracketed numbers are reaction rank based on metabolite shadow price 

#Flux through this reaction was zero 

*Corresponding gene is one of the ‘twenty most selected’ in Table 1 
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Table 3: Reactions with the smallest relative flux spans when optimising the mitochondrial 

metabolic network for either a: haeme synthesis or b: ATP synthesis 

a. Optimize haeme synthesis# b. Optimize ATP synthesis 

Reaction 
Relative flux 

span (×10-6) 
Rank Reaction 

Relative flux 

span (×10-6) 
Rank 

CompIVr1* 1.2 1 ATPtm 0.01 1 

CYOR-u10m 1.2 1 CompIVr1* 0.10 2 

NADH2-u10m* 1.3 3 CYOR-u10m 0.10 3 

CPPPGO 1.4 3 SUCOASm 0.20 4 

FCLTm 1.4 3 ENO 0.21 5 

FE2t1 1.4 3 GAPD 0.21 6 

FE2tm 1.4 3 PGK* 0.21 7 

HMBS* 1.4 3 PGM 0.21 8 

PPPG9tm 1.4 3 FBA 0.21 9 

UPP3S 1.4 3 GLCt1 0.21 10 

UPPDC1 1.4 3 HEX1 0.21 11 

PPPGOm 1.4 3 PFK* 0.21 12 

5AOPtm 1.4 3 PGI 0.21 13 

AKGDm 1.4 3 TPI 0.21 14 

ALASm 1.4 3 ACONTm* 0.22 15 

ASPGLUm 1.4 3 AKGDm 0.22 16 

ASPTAm 1.4 3 CSm 0.22 17 

GLYt2r 1.4 3 ICDHxm 0.22 18 

GLYtm 1.4 3 NADH2-u10m* 0.27 19 

MDHm 1.4 3 FUMm* 0.29 20 

PPBNGS* 1.4 3    

 
#21 reactions due to ‘drawn ranking’ 

*Corresponding gene is one of the ‘twenty most selected’ in Table 1 
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Figure 1: Heatmap showing the effect of hypoxia on flux distribution in the mitochondrial metabolic network. Red = flux increased by > 0.1 U; 

green = flux decreased by > 0.1 U; yellow = flux changed by < 0.1 U..A: Flux balance analysis, with ATP synthesis as the objective function. B: 

Uniform random sampling. (U = μm min-1 g-1)
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Figure 2: Biplot showing scores on principal component 1 vs. scores on principal 

component 2. Both components are from a five-component PCA model of data 

sampled in hypoxia and normoxia. Black triangles = normoxia; grey stars = hypoxia.  

 


