18 research outputs found

    Controlling ferromagnetic ground states and solitons in thin films and nanowires built from iron phthalocyanine chains

    Get PDF
    Iron phthalocyanine (FePc) is a molecular semiconductor whose building blocks are one-dimensional ferromagnetic chains. We show that its optical and magnetic properties are controlled by the growth strategy, obtaining extremely high coercivities of over 1 T and modulating the exchange constant between 15 and 29 K through tuning the crystal phase by switching from thin films with controlled orientations, to ultralong nanowires. Magnetisation measurements are analysed using concepts and formulas with broad applicability to all one-dimensional ferromagnetic chains. They show that FePc is best described by a Heisenberg model with moments preferentially lying in the molecular planes. The chain Hamiltonian is very similar to that for the classic inorganic magnet CsNiF3, but with ferromagnetic rather than antiferromagnetic interchain interactions. The data at large magnetic fields are well-described by the soliton picture, where the dominant degrees of freedom are moving one-dimensional magnetic domain walls and at low temperatures and fields by the “super-Curie-Weiss” law characteristic of nearly one-dimensional xy and Heisenberg ferromagnets. The ability to control the molecular orientation and ferromagnetism of FePc systems, and produce them on flexible substrates, together with excellent transistor characteristics reported previously for phthalocyanine analogues, makes them potentially useful for magneto-optical and spintronic devices

    Formation of ferromagnetic molecular thin films from blends by annealing

    Get PDF
    We report on a new approach for the fabrication of ferromagnetic molecular thin films. Co-evaporated films of manganese phthalocyanine (MnPc) and tetracyanoquinodimethane (TCNQ) have been produced by organic molecular beam deposition (OMBD) on rigid (glass, silicon) and flexible (Kapton) substrates kept at room temperature. The MnPc:TCNQ films are found to be entirely amorphous due to the size mismatch of the molecules. However, by annealing while covering the samples highly crystalline MnPc films in the β-polymorph can be obtained at 60 °C lower than when starting with pure MnPc films. The resulting films exhibit substantial coercivity (13 mT) at 2 K and a Curie temperature of 11.5 K

    QED Effective Action at Finite Temperature: Two-Loop Dominance

    Full text link
    We calculate the two-loop effective action of QED for arbitrary constant electromagnetic fields at finite temperature T in the limit of T much smaller than the electron mass. It is shown that in this regime the two-loop contribution always exceeds the influence of the one-loop part due to the thermal excitation of the internal photon. As an application, we study light propagation and photon splitting in the presence of a magnetic background field at low temperature. We furthermore discover a thermally induced contribution to pair production in electric fields.Comment: 34 pages, 4 figures, LaTe

    O(α)O(\alpha) Radiative Correction to the Casimir Energy for Penetrable Mirrors

    Full text link
    The leading radiative correction to the Casimir energy for two parallel penetrable mirrors is calculated within QED perturbation theory. It is found to be of the order α\alpha like the known radiative correction for ideally reflecting mirrors from which it differs only by a monotonic, powerlike function of the frequency at which the mirrors become transparent. This shows that the O(α2)O(\alpha^2) radiative correction calculated recently by Kong and Ravndal for ideally reflecting mirrors on the basis of effective field theory methods remains subleading even for the physical case of penetrable mirrors.Comment: 4 pages, 1 figure, revtex, subm. to PR

    Geometry and material effects in Casimir physics - Scattering theory

    Full text link
    We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable to objects immersed in media other than vacuum, to nonzero temperatures, and to spatial arrangements in which one object is enclosed in another. Our method combines each object's classical electromagnetic scattering amplitude with universal translation matrices, which convert between the bases used to calculate scattering for each object, but are otherwise independent of the details of the individual objects. This approach, which combines methods of statistical physics and scattering theory, is well suited to analyze many diverse phenomena. We illustrate its power and versatility by a number of examples, which show how the interplay of geometry and material properties helps to understand and control Casimir forces. We also examine whether electrodynamic Casimir forces can lead to stable levitation. Neglecting permeabilities, we prove that any equilibrium position of objects subject to such forces is unstable if the permittivities of all objects are higher or lower than that of the enveloping medium; the former being the generic case for ordinary materials in vacuum.Comment: 44 pages, 11 figures, to appear in upcoming Lecture Notes in Physics volume in Casimir physic

    Finite temperature Casimir effect in piston geometry and its classical limit

    Full text link
    We consider the Casimir force acting on a dd-dimensional rectangular piston due to massless scalar field with periodic, Dirichlet and Neumann boundary conditions and electromagnetic field with perfect electric conductor and perfect magnetic conductor boundary conditions. It is verified analytically that at any temperature, the Casimir force acting on the piston is always an attractive force pulling the piston towards the interior region, and the magnitude of the force gets larger as the separation aa gets smaller. Explicit exact expressions for the Casimir force for small and large plate separations and for low and high temperatures are computed. The limits of the Casimir force acting on the piston when some pairs of transversal plates are large are also derived. An interesting result regarding the influence of temperature is that in contrast to the conventional result that the leading term of the Casimir force acting on a wall of a rectangular cavity at high temperature is the Stefan--Boltzmann (or black body radiation) term which is of order Td+1T^{d+1}, it is found that the contributions of this term from the interior and exterior regions cancel with each other in the case of piston. The high temperature leading order term of the Casimir force acting on the piston is of order TT, which shows that the Casimir force has a nontrivial classical ℏ→0\hbar\to 0 limit

    Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt

    Get PDF
    The optical and electrical properties of terbium(III) bis(phthalocyanine) (TbPc2) films on cobalt substrates were studied using variable angle spectroscopic ellipsometry (VASE) and current sensing atomic force microscopy (cs-AFM). Thin films of TbPc2 with a thickness between 18 nm and 87 nm were prepared by organic molecular beam deposition onto a cobalt layer grown by electron beam evaporation. The molecular orientation of the molecules on the metallic film was estimated from the analysis of the spectroscopic ellipsometry data. A detailed analysis of the AFM topography shows that the TbPc2 films consist of islands which increase in size with the thickness of the organic film. Furthermore, the cs-AFM technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I-V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the microscale. The AFM-based electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution

    Tuning the magneto-optical response of TbPc2 single molecule magnets by the choice of the substrate

    Get PDF
    In this work, we investigated the magneto-optical response of thin films of TbPc2 on substrates which are relevant for (spin) organic field effect transistors (SiO2) or vertical spin valves (Co) in order to explore the possibility of implementing TbPc2 in magneto-electronic devices, the functionality of which includes optical reading. The optical and magneto-optical properties of TbPc2 thin films prepared by organic molecular beam deposition (OMBD) on silicon substrates covered with native oxide were investigated by variable angle spectroscopic ellipsometry (VASE) and magneto-optical Kerr effect (MOKE) spectroscopy at room temperature. The magneto-optical activity of the TbPc2 films can be significantly enhanced by one to two orders of magnitude upon changing the molecular orientation (from nearly standing molecules on SiO2/Si substrates to nearly lying molecules on perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) templated SiO2/Si substrates) or by using metallic ferromagnetic substrates (Co)

    Growth, morphology and structure of mixed pentacene films

    No full text
    Thin films of pentacene and p-terphenyl were grown via organic molecular beam deposition to enable solid-state dilution of functional molecules (pentacene) in an inert matrix (p-terphenyl) at higher concentrations than permitted by traditional crystal growth methods, such as melts. Growth rates were first optimised for single component films to ensure a precise control over the dopant/host concentrations when the mixed films were deposited. Both thin film and bulk phases can be identified in pentacene growths, with the precise lattice parameters dependent on the deposition rates. The effect on the microstructure, resulting from progressive dilution of pentacene in a p-terphenyl host, was then investigated. Although disorder increases and the crystallite size decreases in the mixture, with a minimum at a 1 : 1 ratio, phase segregation is not observed on the length scale (limit) that can be probed in our measurements. This indicates that the mixed films form homogeneous solid-solutions that may be employed for the investigation of solid-state phenomena. Our methodology can be extended to other compatible host-dopant systems used in optoelectronic and spintronic devices
    corecore