15 research outputs found

    Influence of firm size on the competencies required to management engineers in the Jordanian telecommunications sector

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in European Journal of Engineering Education on [13 jun 2016], available online:http://www.tandfonline.com/ doi/abs/10.1080/03043797.2016.1197890.[EN] The objective of this study is to identify the competencies required to achieve success in the transition from higher education to the labour market based on the perceptions of employers. This paper analyses the assessments made by a group of engineering company employers. An item-battery of 20 competencies was grouped into 3 dimensions by using factor analysis. Subsequently, respondents scores were also clustered into three groups and characterised through contingency tables. The competencies demanded by employers were grouped into business and finance, problem-solving and strategic planning. Significant differences were found between responses from employers working in medium and small companies, who placed more importance on competencies related to problem-solving and strategic planning, and employers in big companies, who were more concerned about the difficulties of finding well-trained graduates. The findings from this paper have important implications for research in the areas of higher education and organisations that usually employ graduate engineers.The authors would like to thank the Education, Audiovisual and Culture Executive Agency (EACEA) [Tempus program. Project number 511074] of the European Commission for providing funding for conducting this study. This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.Conchado Peiró, A.; Bas Cerdá, MDC.; Gharaibeh, KM.; Kaylani, H. (2016). Influence of firm size on the competencies required to management engineers in the Jordanian telecommunications sector. European Journal of Engineering Education. 1-14. doi:10.1080/03043797.2016.1197890S114ALLEN, J., & DE WEERT, E. (2007). What Do Educational Mismatches Tell Us About Skill Mismatches? A Cross-country Analysis. European Journal of Education, 42(1), 59-73. doi:10.1111/j.1465-3435.2007.00283.xBarrella, E. M., & Buffinton, K. W. (2009). Corporate Assessment of Strategic Issues in Technology Management. Engineering Management Journal, 21(1), 27-33. doi:10.1080/10429247.2009.11431795Bartram, D., Lindley, P. A., Marshall, L., & Foster, J. (1995). The recruitment and selection of young people by small businesses. Journal of Occupational and Organizational Psychology, 68(4), 339-358. doi:10.1111/j.2044-8325.1995.tb00592.xBehrends, T. (2007). Recruitment Practices in Small and Medium Size Enterprises. An Empirical Study among Knowledge-intensive Professional Service Firms. management revu, 18(1), 55-74. doi:10.5771/0935-9915-2007-1-55Boshuizen, H. P. A. (s. f.). Does Practice Make Perfect? Innovation and Change in Professional Education, 73-95. doi:10.1007/1-4020-2094-5_5Branine, M. (2008). Graduate recruitment and selection in the UK. Career Development International, 13(6), 497-513. doi:10.1108/13620430810901660Butler, C. J., & Chinowsky, P. S. (2006). Emotional Intelligence and Leadership Behavior in Construction Executives. Journal of Management in Engineering, 22(3), 119-125. doi:10.1061/(asce)0742-597x(2006)22:3(119)Carbone, T. A., & Gholston, S. (2004). Project Manager Skill Development: A Survey of Programs and Practitioners. Engineering Management Journal, 16(3), 10-16. doi:10.1080/10429247.2004.11415252Cassell, C., Nadin, S., Gray, M., & Clegg, C. (2002). Exploring human resource management practices in small and medium sized enterprises. Personnel Review, 31(6), 671-692. doi:10.1108/00483480210445962Cattell, R. B., & Vogelmann, S. (1977). A Comprehensive Trial Of The Scree And Kg Criteria For Determining The Number Of Factors. Multivariate Behavioral Research, 12(3), 289-325. doi:10.1207/s15327906mbr1203_2Chan, A. P. C., Ho, D. C. K., & Tam, C. M. (2001). Effect of Interorganizational Teamwork on Project Outcome. Journal of Management in Engineering, 17(1), 34-40. doi:10.1061/(asce)0742-597x(2001)17:1(34)Coll, R. K., & Zegwaard, K. E. (2006). Perceptions of desirable graduate competencies for science and technology new graduates. Research in Science & Technological Education, 24(1), 29-58. doi:10.1080/02635140500485340Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334. doi:10.1007/bf02310555Dekker, R., de Grip, A., & Heijke, H. (2002). The effects of training and overeducation on career mobility in a segmented labour market. International Journal of Manpower, 23(2), 106-125. doi:10.1108/01437720210428379Elfenbein, D. W., Hamilton, B. H., & Zenger, T. R. (2010). The Small Firm Effect and the Entrepreneurial Spawning of Scientists and Engineers. Management Science, 56(4), 659-681. doi:10.1287/mnsc.1090.1130Farr, J. V., & Brazil, D. M. (2009). Leadership Skills Development for Engineers. Engineering Management Journal, 21(1), 3-8. doi:10.1080/10429247.2009.11431792Garen, J. E. (1985). Worker Heterogeneity, Job Screening, and Firm Size. Journal of Political Economy, 93(4), 715-739. doi:10.1086/261327Gharaibeh, K. M., Kaylani, H., Murphy, N., Brennan, C., Itradat, A., Al-Bataineh, M., … Bany Salameh, H. (2014). A Masters Programme in telecommunications management – demand-based curriculum design. European Journal of Engineering Education, 40(3), 267-284. doi:10.1080/03043797.2014.944104Hayes, J., Rose‐Quirie, A., & Allinson, C. W. (2000). Senior managers’ perceptions of the competencies they require for effective performance: implications for training and development. Personnel Review, 29(1), 92-105. doi:10.1108/00483480010295835Hersch, J. (1991). Education Match and Job Match. The Review of Economics and Statistics, 73(1), 140. doi:10.2307/2109696Hoegl, M., & Parboteeah, K. P. (2007). Creativity in innovative projects: How teamwork matters. Journal of Engineering and Technology Management, 24(1-2), 148-166. doi:10.1016/j.jengtecman.2007.01.008Hoegl, M., Praveen Parboteeah, K., & Gemuenden, H. G. (2003). When teamwork really matters: task innovativeness as a moderator of the teamwork–performance relationship in software development projects. Journal of Engineering and Technology Management, 20(4), 281-302. doi:10.1016/j.jengtecman.2003.08.001Van Hoorn, T. P. (1979). Strategic planning in small and medium-sized companies. Long Range Planning, 12(2), 84-91. doi:10.1016/0024-6301(79)90076-1HUSELID, M. A. (1995). THE IMPACT OF HUMAN RESOURCE MANAGEMENT PRACTICES ON TURNOVER, PRODUCTIVITY, AND CORPORATE FINANCIAL PERFORMANCE. Academy of Management Journal, 38(3), 635-672. doi:10.2307/256741Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187-200. doi:10.1007/bf02289233Kaufman, L., & Rousseeuw, P. J. (Eds.). (1990). Finding Groups in Data. Wiley Series in Probability and Statistics. doi:10.1002/9780470316801Krug, J. (1997). People Skills: Teamwork. Journal of Management in Engineering, 13(2), 15-16. doi:10.1061/(asce)0742-597x(1997)13:2(15)Male, S. A., Bush, M. B., & Chapman, E. S. (2010). Perceptions of Competency Deficiencies in Engineering Graduates. Australasian Journal of Engineering Education, 16(1), 55-68. doi:10.1080/22054952.2010.11464039Mao, X., Zhang, X., & AbouRizk, S. M. (2009). Enhancing Value Engineering Process by Incorporating Inventive Problem-Solving Techniques. Journal of Construction Engineering and Management, 135(5), 416-424. doi:10.1061/(asce)co.1943-7862.0000001Mendelsohn, R. (1998). Teamwork—The Key to Productivity. Journal of Management in Engineering, 14(1), 22-25. doi:10.1061/(asce)0742-597x(1998)14:1(22)Moore, B. V. (1921). Personnel selection of graduate engineers: The differentiation of apprentice engineers for training as salesmen, designers, and executives of production. Psychological Monographs, 30(5), i-85. doi:10.1037/h0093191Moy, J. W., & Lee, S. M. (2002). The career choice of business graduates: SMEs or MNCs? Career Development International, 7(6), 339-347. doi:10.1108/13620430210444367Nair, C. S., Patil, A., & Mertova, P. (2009). Re-engineering graduate skills – a case study. European Journal of Engineering Education, 34(2), 131-139. doi:10.1080/03043790902829281Passow, H. J. (2012). Which ABET Competencies Do Engineering Graduates Find Most Important in their Work? Journal of Engineering Education, 101(1), 95-118. doi:10.1002/j.2168-9830.2012.tb00043.xPinnington, A. H. (2011). Competence development and career advancement in professional service firms. Personnel Review, 40(4), 443-465. doi:10.1108/00483481111133336Reio, T. G., & Sutton, F. C. (2006). Employer assessment of work-related competencies and workplace adaptation. Human Resource Development Quarterly, 17(3), 305-324. doi:10.1002/hrdq.1176Robar, T. Y. (1998). Communication and Career Advancement. Journal of Management in Engineering, 14(2), 26-28. doi:10.1061/(asce)0742-597x(1998)14:2(26)Rowold, J., & Kauffeld, S. (2008). Effects of career‐related continuous learning on competencies. Personnel Review, 38(1), 90-101. doi:10.1108/00483480910920732Ruiz-Mercader, J., Meroño-Cerdan, A. L., & Sabater-Sánchez, R. (2006). Information technology and learning: Their relationship and impact on organisational performance in small businesses. International Journal of Information Management, 26(1), 16-29. doi:10.1016/j.ijinfomgt.2005.10.003Soliman, F., & Spooner, K. (2000). Strategies for implementing knowledge management: role of human resources management. Journal of Knowledge Management, 4(4), 337-345. doi:10.1108/13673270010379894Srour, I., Abdul-Malak, M.-A., Itani, M., Bakshan, A., & Sidani, Y. (2013). Career Planning and Progression for Engineering Management Graduates: An Exploratory Study. Engineering Management Journal, 25(3), 85-100. doi:10.1080/10429247.2013.11431985Sunindijo, R. Y., Hadikusumo, B. H., & Ogunlana, S. (2007). Emotional Intelligence and Leadership Styles in Construction Project Management. Journal of Management in Engineering, 23(4), 166-170. doi:10.1061/(asce)0742-597x(2007)23:4(166)Tanova, C. (2003). Firm size and recruitment: staffing practices in small and large organisations in north Cyprus. Career Development International, 8(2), 107-114. doi:10.1108/13620430310465534Teichler, U. (1999). Higher education policy and the world of work: changing conditions and challenges. Higher Education Policy, 12(4), 285-312. doi:10.1016/s0952-8733(99)00019-7Tsang, M. C., & Levin, H. M. (1985). The economics of overeducation. Economics of Education Review, 4(2), 93-104. doi:10.1016/0272-7757(85)90051-2Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236-244. doi:10.1080/01621459.1963.10500845Zenger, T. R. (1994). Explaining Organizational Diseconomies of Scale in R&D: Agency Problems and the Allocation of Engineering Talent, Ideas, and Effort by Firm Size. Management Science, 40(6), 708-729. doi:10.1287/mnsc.40.6.708Zenger, T. R., & Lazzarini, S. G. (2004). Compensating for innovation: Do small firms offer high-powered incentives that lure talent and motivate effort? Managerial and Decision Economics, 25(67), 329-345. doi:10.1002/mde.119

    Efficacy of intracerebral delivery of cisplatin in combination with photon irradiation for treatment of brain tumors.: Intracerebral CDDP with radiotherapy for glioma treatment.

    No full text
    International audienceWe have evaluated the efficacy of intracerebral (i.c.) convection-enhanced delivery (CED) of cisplatin in combination with photon irradiation for the treatment of F98 glioma-bearing rats. One thousand glioma cells were stereotactically implanted into the brains of Fischer rats and 13 days later cisplatin (6 microg/20 microl) was administered i.c. by CED at a flow rate of 0.5 microl/min. On the following day the animals were irradiated with a single 15 Gy dose of X-rays, administered by a linear accelerator (LINAC) or 78.8 keV synchrotron X-rays at the European Synchrotron Radiation Facility (ESRF). Untreated controls had a mean survival time (MST) + or - standard error of 24 + or - 1 days compared to >59 + or - 13 days for rats that received cisplatin alone with 13% of the latter surviving >200 days. Rats that received cisplatin in combination with either 6 MV (LINAC) or 78.8 keV (synchrotron) X-rays had almost identical MSTs of >75 + or - 18 and >74 + or - 19 days, respectively with 17 and 18% long-term survivors. Microscopic examination of the brains of long-term surviving rats revealed an absence of viable tumor cells and cystic areas at the presumptive site of the tumor. Our data demonstrate that i.c. CED of cisplatin in combination with external X-irradiation significantly enhanced the survival of F98 glioma-bearing rats. This was independent of the X-ray beam energy and probably was not due to the production of Auger electrons as we previously had postulated. Our data provide strong support for the approach of concomitantly administering platinum-based chemotherapy in combination with radiotherapy for the treatment of brain tumors. Since a conventional LINAC can be used as the radiation source, this should significantly broaden the clinical applicability of this approach compared to synchrotron radiotherapy, which could only be carried out at a very small number of specialized facilities

    High-Resolution and Animal Imaging Instrumentation and Techniques

    No full text
    During the last decade we have observed a growing interest in “in vivo” imaging techniques for small animals. This is due to the necessity of studying biochemical processes at a molecular level for pharmacology, genetic, and pathology investigations. This field of research is usually called “molecular imaging.”Advances in biological understanding have been accompanied by technological advances in instrumentation and techniques and image-reconstruction software, resulting in improved image quality, visibility, and interpretation. The main technological challenge is then the design of systems with high spatial resolution and high sensitivity. This chapter gives a short overview of the state-of-the-art technologies for high-resolution and high-sensitivity molecular imaging techniques, namely, positron emission tomography (PET) and single photon emission computed tomography (SPECT) as well as the basics of small-animal x-ray computed tomography (CT). Multimodality techniques merging molecular information with anatomical details are also introduced. Finally, the new trends in detector technology for other high-resolution applications like breast cancer investigation are presented
    corecore