106 research outputs found

    Measles virus-specific murine T cell clones: characterization of fine specificity function.

    Get PDF
    Measles virus (MV)-specific murine helper T cell clones (Thy-1.2+, CD4+, CD8-) were generated from mice immunized with MV-infected mouse brain homogenate by limiting dilution and in vitro stimulation of spleen cells with UV-inactivated MV Ag. The protein specificity of 7 out of 37 stable T cell clones, which displayed MHC-restricted MV Ag recognition, could be assessed by using purified MV proteins. Two fusion (F) protein-specific, two hemagglutinin-specific, and three nucleoprotein- or matrix protein-specific clones were shown to be established. The F protein-specific T cell clones together with a pane

    Host resistance to rat cytomegalovirus (RCMV) and immune function in adult PVG rats fed herring from the contaminated Baltic Sea

    Get PDF
    The immunotoxic potential of many classes of environmental contaminants has been well established in laboratory studies, with much attention being focussed on aryl hydrocarbon (Ah)-receptor binding polychlorinated biphenyl (PCB), polychlorinated dibenzo-p-dioxin (PCDD), and polychlorinated dibenzofuran (PCDF) congeners. In a semi-field study, we previously showed that harbour seals (Phoca vitulina) fed herring from the contaminated Baltic Sea had lower natural killer cell activity, T-lymphocyte functionality and delayed-type hypersensitivity responses than seals fed herring from the relatively uncontaminated Atlantic Ocean. While ethical and practical constraints preclude in-depth studies in seals, specific reagents and a wider array of immune function tests allow such studies in laboratory rats. We therefore carried out a feeding study in rats aimed at extending our observations of contaminant-induced immunosuppression in harbour seals. The same two herring batches used in the seal study were freeze-dried, supplemented and fed. to female adult PVG rats for a period of 4 1/4 months. Daily contaminant intakes of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalents (TEQ) were estimated to be 0.3 ng/kg body weight and 1.6 ng/kg in the Atlantic and Baltic groups, respectively. At the end of the feeding experiment, no contaminant-related changes in spleen CD4+/CD8+cellularity, natural killer cell activity, or mitogen-induced proliferative responses of thymus or spleen cells could be detected. However, total thymocyte numbers and thymus CD4+/CD8+ratios were reduced in the Baltic group. A novel model was established to assess the specific T-cell response to rat cytomegalovirus (RCMV). When applied to the feeding study, no differences between the Atlantic and Baltic groups in the RCMV-induced proliferative T-lymphocyte responses could be detected, but virus titres in salivary glands of infected rats of the Baltic Sea group were higher. These elevated RCMV titres and changes in thymus cellularity suggest that the dietary exposure to low levels of contaminants may have been immunotoxic at a level which our immune function test could not otherwise detect. While the herring diet per se appeared to have an effect on several immune function parameters, lower plasma thyroid hormone levels in the Baltic Sea group of rats confirmed that exposure to the environmental mixture of contaminants led to adverse PHAH-related health effects

    Epidemic of mumps among vaccinated persons, the Netherlands, 2009-2012

    Get PDF
    To analyze the epidemiology of a nationwide mumps epidemic in the Netherlands, we reviewed 1,557 notified mumps cases in persons who had disease onset during September 1, 2009-August 31, 2012. Seasonality peaked in sprin

    Comparison of norovirus genogroup I, II and IV seroprevalence among children in the Netherlands, 1963, 1983 and 2006

    Get PDF
    Noroviruses are a major cause of acute gastroenteritis worldwide and are a genetically diverse group of viruses. Since 2002, an increasing number of norovirus outbreaks have been reported globally, but it is not clear whether this increase has been caused by a higher awareness or reflects the emergence of new genogroup II genotype 4 (GII.4) variants. The hypothesis that norovirus prevalence has increased post-2002 and is related to the emergence of GII.4 is tested in this study. Sera collected from children aged <5 years of three Dutch cross-sectional population based cohorts in 1963, 1983 and 2006/2007 (n=143, n=130 and n=376, respectively) were tested for specific serum IgG by protein array using antigens to GII.4 and a range of other antigens representing norovirus GI, GII and GIV genotypes. The protein array was validated by paired sera of norovirus infected patients and supernatants of B-cell cultures with single epitope specificity. Evidence for norovirus infection was found to be common among Dutch children in each cohort, but the prevalence towards different genotypes changed over time. At the genogroup level, GI seroprevalence decreased significantly between 1963 and 2006/2007, while a significant increase of GII and, in particular, specific antibodies of the genotype GII.4 was detected in the 2006/2007 cohort. There were no children with only GII.4 antibodies in the 1963 cohort. This study shows that the high GII.4 norovirus incidence in very young children is a recent phenomenon. These findings are of importance for vaccine development and trials that are currently focusing mostly on GII.4 viruses

    Additional evidence on serological correlates of protection against measles: An observational cohort study among once vaccinated children exposed to measles

    Get PDF
    To assess correlates of protection against measles and against subclinical measles virus (MV) infection, we recruited once-vaccinated children from geographic regions associated with increased MV circulation and/or at schools with low vaccination coverage in the Netherlands. Paired blood samples were collected shortly after onset of the measles outbreak and after the outbreak. A questionnaire was used to document the likelihood of exposure to MV and occurrence of measles-like symptoms. All blood samples were tested for MV-specific antibodies with five different assays. Correlates of protection were assessed by considering the lowest neutralizing antibody levels in children without MV infection, and by ROC analyses. Among 91 participants, two seronegative children (2%) developed measles, and an additional 19 (23%) experienced subclinical MV infection. The correlate of protection against measles was lower than 0.345 IU/mL. We observed a decreasing attack rate of subclinical MV infection with increasing levels of specific antibodies until 2.1 IU/mL, above which no subclinical MV infections were detected. The ROC analyses found a correlate of protection of 1.71 IU/mL (95% CI 1.01–2.11) for subclinical MV infection. Our correlates of protection were consistent with previous estimates. This information supports the analyses of serosurveys to detect immunity gaps that require targeted intervention strategies

    Differences in antigenic sites and other functional regions between genotype A and G mumps virus surface proteins

    Get PDF
    The surface proteins of the mumps virus, the fusion protein (F) and haemagglutinin-neuraminidase (HN), are key factors in mumps pathogenesis and are important targets for the immune response during mumps virus infection. We compared the predicted amino acid sequences of the F and HN genes from Dutch mumps virus samples from the pre-vaccine era (1957–1982) with mumps virus genotype G strains (from 2004 onwards). Genotype G is the most frequently detected mumps genotype in recent outbreaks in vaccinated communities, especially in Western Europe, the USA and Japan. Amino acid differences between the Jeryl Lynn vaccine strains (genotype A) and genotype G strains were predominantly located in known B-cell epitopes and in N-linked glycosylation sites on the HN protein. There were eight variable amino acid positions specific to genotype A or genotype G sequences in five known B-cell epitopes of the HN protein. These differences may account for the reported antigenic differences between Jeryl Lynn and genotype G strains. We also found amino acid differences in and near sites on the HN protein that have been reported to play a role in mumps virus pathogenesis. These differences may contribute to the occurrence of genotype G outbreaks in vaccinated communities

    mRNA-1273 COVID-19 vaccination in patients receiving chemotherapy, immunotherapy, or chemoimmunotherapy for solid tumours:a prospective, multicentre, non-inferiority trial

    Get PDF
    BACKGROUND: Patients with cancer have an increased risk of complications from SARS-CoV-2 infection. Vaccination to prevent COVID-19 is recommended, but data on the immunogenicity and safety of COVID-19 vaccines for patients with solid tumours receiving systemic cancer treatment are scarce. Therefore, we aimed to assess the impact of immunotherapy, chemotherapy, and chemoimmunotherapy on the immunogenicity and safety of the mRNA-1273 (Moderna Biotech, Madrid, Spain) COVID-19 vaccine as part of the Vaccination Against COVID in Cancer (VOICE) trial. METHODS: This prospective, multicentre, non-inferiority trial was done across three centres in the Netherlands. Individuals aged 18 years or older with a life expectancy of more than 12 months were enrolled into four cohorts: individuals without cancer (cohort A [control cohort]), and patients with solid tumours, regardless of stage and histology, treated with immunotherapy (cohort B), chemotherapy (cohort C), or chemoimmunotherapy (cohort D). Participants received two mRNA-1273 vaccinations of 100 μg in 0·5 mL intramuscularly, 28 days apart. The primary endpoint, analysed per protocol (excluding patients with a positive baseline sample [>10 binding antibody units (BAU)/mL], indicating previous SARS-CoV-2 infection), was defined as the SARS-CoV-2 spike S1-specific IgG serum antibody response (ie, SARS-CoV-2-binding antibody concentration of >10 BAU/mL) 28 days after the second vaccination. For the primary endpoint analysis, a non-inferiority design with a margin of 10% was used. We also assessed adverse events in all patients who received at least one vaccination, and recorded solicited adverse events in participants who received at least one vaccination but excluding those who already had seroconversion (>10 BAU/mL) at baseline. This study is ongoing and is registered with ClinicalTrials.gov, NCT04715438. FINDINGS: Between Feb 17 and March 12, 2021, 791 participants were enrolled and followed up for a median of 122 days (IQR 118 to 128). A SARS-CoV-2-binding antibody response was found in 240 (100%; 95% CI 98 to 100) of 240 evaluable participants in cohort A, 130 (99%; 96 to >99) of 131 evaluable patients in cohort B, 223 (97%; 94 to 99) of 229 evaluable patients in cohort C, and 143 (100%; 97 to 100) of 143 evaluable patients in cohort D. The SARS-CoV-2-binding antibody response in each patient cohort was non-inferior compared with cohort A. No new safety signals were observed. Grade 3 or worse serious adverse events occurred in no participants in cohort A, three (2%) of 137 patients in cohort B, six (2%) of 244 patients in cohort C, and one (1%) of 163 patients in cohort D, with four events (two of fever, and one each of diarrhoea and febrile neutropenia) potentially related to the vaccination. There were no vaccine-related deaths. INTERPRETATION: Most patients with cancer develop, while receiving chemotherapy, immunotherapy, or both for a solid tumour, an adequate antibody response to vaccination with the mRNA-1273 COVID-19 vaccine. The vaccine is also safe in these patients. The minority of patients with an inadequate response after two vaccinations might benefit from a third vaccination. FUNDING: ZonMw, The Netherlands Organisation for Health Research and Development

    Decreased antibody response after severe acute respiratory syndrome coronavirus 2 vaccination in patients with Down syndrom

    Get PDF
    The risk of a severe course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in adults with Down syndrome is increased, resulting in an up to 10-fold increase in mortality, in particular in those >40 years of age. After primary SARS-CoV-2 vaccination, the higher risks remain. In this prospective observational cohort study, SARS-CoV-2 spike S1-specific antibody responses after routine SARS-CoV-2 vaccination (BNT162b2, messenger RNA [mRNA]-1273, or ChAdOx1) in adults with Down syndrome and healthy controls were compared. Adults with Down syndrome showed lower antibody concentrations after 2 mRNA vaccinations or after 2 ChAdOx1 vaccinations. After 2 mRNA vaccinations, lower antibody concentrations were seen with increasing age. In this prospective cohort study that included 222 adults with Down syndrome, a significantly lower antibody response was found after SARS-CoV-2 mRNA or vector vaccination compared to healthy controls. After mRNA vaccination, lower antibodies were found with increasing age

    B-cell targeting with anti-CD38 daratumumab:implications for differentiation and memory responses

    Get PDF
    B cell–targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell–dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-?B in B cells and the transcription of NF-?B–targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell–mediated diseases other than the currently targeted malignancies
    • …
    corecore