
Epidemics 46 (2024) 100751

A
1
n

Contents lists available at ScienceDirect

Epidemics

journal homepage: www.elsevier.com/locate/epidemics

Estimation of the infection attack rate of mumps in an outbreak among
college students using paired serology
Michiel van Boven a,b,∗, Jantien A. Backer a, Irene Veldhuijzen a, Justin Gomme c,d,
Rob van Binnendijk a, Patricia Kaaijk a

a Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
b Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
c Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
d NHS Scotland, Edinburgh, Scotland, United Kingdom

A R T I C L E I N F O

Keywords:
Mumps virus
Serology
Outbreak
Paired data
Mixture model

A B S T R A C T

Mumps virus is a highly transmissible pathogen that is effectively controlled in countries with high vaccination
coverage. Nevertheless, outbreaks have occurred worldwide over the past decades in vaccinated populations.
Here we analyse an outbreak of mumps virus genotype G among college students in the Netherlands over the
period 2009–2012 using paired serological data. To identify infections in the presence of preexisting antibodies
we compared mumps specific serum IgG concentrations in two consecutive samples (𝑛 = 746), whereby the first
sample was taken when students started their study prior to the outbreaks, and the second sample was taken
2–5 years later. We fit a binary mixture model to the data. The two mixing distributions represent uninfected
and infected classes. Throughout we assume that the infection probability increases with the ratio of antibody
concentrations of the second to first sample. The estimated infection attack rate in this study is higher than
reported earlier (0.095 versus 0.042). The analyses yield probabilistic classifications of participants, which
are mostly quite precise owing to the high intraclass correlation of samples in uninfected participants (0.85,
95%CrI: 0.82 − 0.87). The estimated probability of infection increases with decreasing antibody concentration
in the pre-outbreak sample, such that the probability of infection is 0.12 (95%CrI: 0.10 − 0.13) for the lowest
quartile of the pre-outbreak samples and 0.056 (95%CrI: 0.044−0.068) for the highest quartile. We discuss the
implications of these insights for the design of booster vaccination strategies.
1. Introduction

Mass vaccination campaigns have been highly successful in reducing
transmission and associated morbidity of infectious diseases of child-
hood. Case in point is the Measles–Mumps–Rubella vaccine, which
in the Netherlands is administered at 14 months and 9 years, and
has a coverage of 90%–95%. It is known, however, that the antibody
response to the mumps component in the vaccine wanes over time, and
that IgG antibodies induced by the vaccine have relatively low avid-
ity (Davidkin et al., 2008; Cortese et al., 2011; Kontio et al., 2012; Antia
et al., 2018). Perhaps owing to this, mumps outbreaks have occurred
worldwide over the past decades, mainly in vaccinated adolescents and
young adults. These outbreaks often occurred in close contact settings
(schools, households, parties), and were mostly caused by genotypes
that are different from the vaccine genotype (van Boven et al., 2013;
Willocks et al., 2017; Patel et al., 2017; Veneti et al., 2018; Shah et al.,
2018; Westphal et al., 2019; Ferenczi et al., 2020; Perez Duque et al.,

∗ Corresponding author at: Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
E-mail address: michiel.van.boven@rivm.nl (M. van Boven).

2021; Moncla et al., 2021). For instance, the current vaccine used in
the Netherlands contains the Jeryl-Lynn strain (genotype A), and is
genetically distant from the recent outbreak strains (genotypes D and
G) (Rubin et al., 2012; Gouma et al., 2018). This vaccine is also widely
used in the United States and other European countries.

Many but not all infections with mumps virus are asymptomatic
or are associated with mild symptoms only, especially in vaccinated
individuals (Dittrich et al., 2011). This makes it difficult to assess the
true extent of virus circulation in an outbreak. In principle, reliable
infection attack rates can be obtained from measuring mumps-specific
IgG antibody concentrations, because these generally increase after
mumps virus infection (Borgmann et al., 2014). However, a challenge
is that paired pre- and post-outbreak samples are often not available,
and that there are no generally agreed antibody concentrations that
define recent infection in a single sample. Two studies have shown that
pre-outbreak mumps neutralisation antibody concentrations in patients
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with mumps were generally lower than in persons who were not
infected with mumps virus during the outbreak (Cortese et al., 2011;
Kaaijk et al., 2019, 2022). However, it proved not possible to define
reliable cutoffs separating infected from uninfected persons, and sepa-
rating patients with clinical symptoms from person with asymptomatic
or mild infection (Cortese et al., 2011). Hence, it is not straightforward
to deduce who has been infected either clinically or sub-clinically,
especially when only a single serum sample is available, and it is not
clear how the probability of infection depends on pre-existing antibody
concentrations.

In an earlier study, we measured mumps-specific IgG antibody con-
centrations in paired pre- and post-outbreak samples from university
students in the Netherlands, using a fluorescent bead-based multiplex
immunoassay (Smits et al., 2012; Gouma et al., 2014b; Kaaijk et al.,
2019). In these studies, we calculated the proportions of symptomatic
and asymptomatic infections, and determined infection attack rates
and risk factors for mumps virus infection using predefined criteria
for infection. Specifically, participants would be classified as infected
if there was a fourfold increase of antibody concentrations from first to
second sample, or a high antibody concentration in the second sample.
Further, to identify a correlate of protection, mumps-specific IgG con-
centrations in pre-outbreak samples were compared between infected
and non-infected persons (Sane et al., 2014; Gouma et al., 2014b,a).
However, as antibody concentrations decay over time, especially in the
first months after an infection (Antia et al., 2018; Kaaijk et al., 2020,
2019, 2022), and as the second sample in our study may have been
taken several years after infection, we need analyses with less rigid
criteria for infection. Therefore, in this study we use methods that do
not rely on predefined criteria for infection, but that estimate infection
probabilities directly from the available serological data.

Our aim is to provide estimates of the infection attack rates using
methods that make optimal use of the data, and that do not use pre-
defined cutoffs or fixed titer increases for classification. Specifically,
we probabilistically classify participants with a two-component binary
mixture model in which the component distributions represent infected
and uninfected persons (Steens et al., 2011; te Beest et al., 2014; Vink
et al., 2015). Usually, the mixing parameter in such analyses represents
the prevalence or probability that a person is infected. Instead of using
a fixed population-level mixing parameter, we here link the pre- and
post-outbreak samples by making the biologically plausible assumption
that the probability of infection increases monotonically with the ratio
of post- to pre-outbreak antibody concentration. This enables estima-
tion of the infection probability and associated uncertainty for each
participant in a manner that is optimally informed by the data.

2. Methods

2.1. Study population and sample collection

All pre-outbreak sera in this retrospective study are taken from first-
year medical students from Leiden University and Utrecht University.
Recruitment from this population was carried out from 2007–2010,
and resulted in a study population of 746 students with both a pre-
and post-outbreak sample. The study has been approved by a medical
ethical committee (NL38042.041.11), and has been described in detail
earlier (Kaaijk et al., 2019). Briefly, a self-sampled dried blot spot sam-
ple, a questionnaire concerning vaccination history, risk factors, and
mumps symptoms has been obtained from each student. The serological
criteria for mumps virus infection in the previous study were a fourfold
increase in IgG concentration combined with at least an post-outbreak
antibody concentration of 300 RU/ml (Kaaijk et al., 2019). A small
subset of 16 participants show a strong (more than fourfold) decrease
in the antibody concentration from pre- to post-outbreak sample. These
could represent recent infections, as pre-outbreak samples had been
taken from 2007–2010, while the outbreak lasted from 2009–2012. We
therefore perform analyses of the full data in the body of the text, but
also indicate how the results are affected if those 16 participants are
2
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2.2. Mumps-specific IgG multiplex immunoassay

Mumps virus – specific serum immunoglobulin G (hereafter called
IgG) antibody concentrations have been determined by a fluorescent
bead – based multiplex immunoassay as described before, using puri-
fied Jeryl-Lynn mumps vaccine strain as antigen (Smits et al., 2012,
2013). For analysis, all antibody concentrations are log2-transformed,
and in the following the log-transformed concentrations are referred to
as (antibody) titers.

2.3. Mixture model for paired data

Participants are assumed to be uninfected in the first sample, and
either infected or uninfected in the second sample. Here, we assume
that these two classes are characterised by probability distributions for
the antibody titers, and are characterised by density functions 𝑓uninf

and 𝑓 inf. Based on preliminary analyses, we assume that the titer dis-
tributions of the two classes are normally distributed with parameters
𝜽uninf = {𝜇uninf, 𝜎uninf} and 𝜽inf = {𝜇inf, 𝜎inf}. For our data, the pre-
utbreak samples provide information on the uninfected component
robability distribution, and the post-outbreak samples inform both
he uninfected and infected component probability distributions. In
ixture models for cross-sectional data the probability of infection

s usually given by the prevalence weighted density of the infected
omponent divided by the sum of the weighted infected and uninfected
omponents (e.g., Vink et al., 2015; Bouman et al., 2021, 2022). Here
e take an alternative approach that makes use of the fact that data are
aired by postulating that the probability that a post-outbreak sample
elongs to the infected component (the mixing parameter) increases
onotonically with the ratio of the post- versus pre-outbreak titers.

pecifically, we propose a two-parameter logistic infection function
uch that the mixing parameter for the 𝑖th participant (𝑖 = 1,… , 746),
inf
𝑖 , is given by

inf
𝑖 = 1

1 + 𝑒−𝑘
(

𝑌 post
𝑖 −𝑌 pre

𝑖 −𝑥0
) . (1)

n Eq. (1), 𝑌 pre
𝑖 and 𝑌 post

𝑖 denote the antibody titers in the pre- and
ost-outbreak samples, and 𝑘 and 𝑥0 represent the steepness and 50%
nfection probability of the logistic function. Throughout, we use a
ransformation of the two-parameter logistic function (𝑘 and 𝑥0) in
erms of the probability that a sample belongs to the infected com-
onent if antibody concentrations remain unchanged (𝑞0), and if a
ourfold increase is observed (𝑞2). This yields parameters that can be
nterpreted more easily in biological terms, and facilitates making in-
ormed choices for the parameter prior distributions. A straightforward
alculation shows that

𝑘 = 1
2
(

log
(

𝑞−10 − 1
)

− log
(

𝑞−12 − 1
))

𝑥0 = −2
log

(

𝑞−10 − 1
)

log
(

𝑞−12 − 1
)

− log
(

𝑞−10 − 1
) .

Biological reasoning implies that one would expect 𝑞0 ≈ 0 and 𝑞2 ≈
1 (Smits et al., 2012; Gouma et al., 2014b). Notice further that 𝑞inf

𝑖
only depends on the difference of the two measurements but not on
the individual values of 𝑌 pre

𝑖 and 𝑌 post
𝑖 . Also notice that a difference of

1 between antibody titers represents a twofold increase, a difference of
2 a fourfold increase, etcetera.

To estimate parameters and take correlations between pre- and
post-outbreak samples into account, we estimate the unknown latent
antibody titers of uninfected persons. Here we assume that the latent
titers, 𝑦uninf

𝑖 , are drawn from a normal hyper distribution representing
the unobserved true titers of uninfected persons. Specifically we take

𝑦uninf
𝑖 ∼ 

(

𝜇uninf
pop , 𝜎uninf

pop

)

, (2)

where 𝜇uninf
pop and 𝜎uninf

pop are the population mean and variance of the
istribution of latent antibody concentrations in uninfected persons.
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Each measurement of uninfected persons provides a possibly imperfect
representation of the latent antibody concentration, such that, for
instance, for pre-outbreak samples 𝑌 pre

𝑖 (𝑖 = 1,… , 746) we have

𝑌 pre
𝑖 ∼ 

(

𝑦uninf
𝑖 , 𝜎uninf

noise
)

, (3)

where 𝜎uninf
noise represents the measurement noise. On the other hand,

post-outbreak samples can be either uninfected or infected, and there-
fore these samples are distributed according to the mixture distribution

𝑌 post
𝑖 ∼

(

1 − 𝑞inf
𝑖
)


(

𝑦uninf
𝑖 , 𝜎uninf

noise
)

+ 𝑞inf
𝑖 

(

𝜇inf, 𝜎inf) . (4)

Together, Eqs. (1)–(4) specify the model. Notice that the pre-outbreak
samples inform the uninfected component distribution, and that the
post-outbreak samples inform both the uninfected and infected com-
ponent distributions.

With the above model at hand we can calculate for each participant
the probability of infection, 𝑝inf

𝑖 , as the prevalence weighted density of
the infected component divided by the sum of the weighted infected
and uninfected components, i.e.

𝑝inf
𝑖 =

𝑞inf
𝑖 𝑓 inf

𝑖

𝑞inf
𝑖 𝑓 inf

𝑖 +
(

1 − 𝑞inf
𝑖
)

𝑓uninf
𝑖

. (5)

where we have suppressed the dependence of 𝑝inf
𝑖 and 𝑞inf

𝑖 on the
antibody differences 𝑌 post

𝑖 −𝑌 pre
𝑖 , and the dependence of 𝑓uninf

𝑖 and 𝑓 inf
𝑖

on post-outbreak antibody concentrations 𝑌 post
𝑖 . Hence, the probability

of infection depends on both the mixing parameter and the mixing
distributions.

Finally, to quantify correlations of antibody concentrations in pre-
and post-outbreak samples of uninfected persons, we calculate the
intraclass correlation 𝑟ICC as

𝑟ICC =
(𝜎uninf

pop )2

(𝜎uninf
pop )2 + (𝜎uninf

noise )
2
.

The intraclass correlation will be low if measurement noise is high and
samples in uninfected persons are not strongly correlated, and it will
be high if the reverse is true. Of course, whether post-outbreak samples
are actually infected is not known, but this is estimated.

2.4. Prior distributions and inference

Parameters are estimated in a Bayesian framework using Hamilto-
nian Monte Carlo, implemented in Stan (Carpenter et al., 2017a). The
main parameters to be estimated are the mean and standard deviation
of the hyper distribution of antibody titers in uninfected persons, 𝜇uninf

pop
and 𝜎uninf

pop , the random noise 𝜎uninf
noise , the mean and standard deviation

of antibody titers in infected persons, 𝜇inf and 𝜎inf, and the parameters
defining the probability of infection when there is no increase in
antibody titer from pre- to post-outbreak samples, and when there is
a fourfold increase, 𝑞0 and 𝑞2.

Prior distributions for the means and standard deviations of the
uninfected component distribution are based on pre-outbreak samples
as these are by definition classified as uninfected. Specifically, we take
𝜇uninf

pop ∼ 
(

𝜇, 0.1
)

for the mean of the uninfected hyperdistribution and
where 𝜇 = 7.3 denotes the mean of the pre-outbreak antibody titers.
Likewise, we take 𝜎uninf

pop ∼ 
(

𝜎, 0.25
)

for the standard deviation of the
uninfected hyperdistribution, where 𝜎 = 1.3 represents the standard
deviation of the pre-outbreak data. Further, we take 𝑞0 ∼  (1, 29)
and 𝑞2 ∼  (29, 1), such that the one-sided 95% prior ranges of these
parameters are approximately [0, 0.1] and [0.9 − 1], respectively. Other
parameters (𝜎uninf

noise , 𝜇inf, and 𝜎inf) are not equipped with explicit prior
distributions, implying that all values on their domains are a priori
equally likely.

All analyses are performed using R (version 4.3.1) and Stan using
the RStan interface (version 2.21.8) (Carpenter et al., 2017b). We run
10 Hamiltonian Monte Carlo (HMC) chains in parallel and base the
3
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Fig. 1. Overview of the data. Shown are the paired antibody titers (i.e. log2-
transformed antibody concentrations) for each of the 746 participants in the post- versus
pre-outbreak survey. Titers range from 3 to 15, so that mumps-specific IgG antibody
concentrations range from 23 = 8 RU/mL to 215 = 32,768 RU/mL (Kaaijk et al., 2019).
The solid line represents the identity function with equal antibody concentrations in
the pre- and post-outbreak samples. Dashed lines represent a twofold increase and
decrease of the antibody concentration, and dotted lines represent a fourfold increase
and decrease. The dashed–dotted line represents the minimum titer in the post-outbreak
survey for positive classification (8.2, corresponding to 28.2 = 300 RU/mL). Participants
that were previously classified as infected are depicted in red (Kaaijk et al., 2019).
Distributions on the top and right represent marginal titer distributions in the pre- and
post-outbreak surveys, respectively.

analyses on 10,000 thinned samples from 10 well-mixed chains. Data,
scripts, and figures are available in the online repository at https://
github.com/rivm-syso/mumps_serology.

3. Results

3.1. Rule-based classification

The data have been described and analysed earlier (Sane et al.,
2014; Gouma et al., 2014b,a; Kaaijk et al., 2019), and we here put
the earlier findings into a perspective relevant to our analyses. Fig. 1
shows the antibody titer measurements and distributions of the pre-
and post-outbreak samples. There is substantial variation in the pre-
and post-outbreak data, with mumps-specific IgG antibody titer mea-
surements generally ranging from 4–14 (16–16,384 RU/mL). Hence,
antibody concentrations can vary more than 1,000-fold. The figure
also shows that there is a strong correlation between the paired pre-
and post-outbreak samples, such that for the majority of participants
the post-outbreak titer is roughly equal to the pre-outbreak titer. In
fact, for most paired samples titer differences are within a twofold
change in concentration. Only a small fraction of samples has a more
than fourfold difference between pre- and post-outbreak samples, and
most of these participants show a more than fourfold increase. In fact,
33∕746 = 0.044 show a fourfold or more antibody increase. Of these,
31 also have a post-outbreak antibody concentration of 300 RU/mL, so
that the rule-based cumulative infection attack rate would be 31∕746 =
0.042. On the other hand, only a small fraction of participants (16∕746 =
0.021) show a more than fourfold antibody decrease. Interestingly, the
number of participants with a modest titer increase between two- and
fourfold is substantially larger than the number with a similar modest
 from ClinicalKey.com by Elsevier on July 31, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.
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Fig. 2. Overview of the data and fitted mixture distribution. Shown are the data
(histograms) with fitted distributions weighted by estimated prevalence (lines). Shaded
areas represent 95% credible envelopes. Top panel: pre-outbreak data with fitted
distribution of uninfected participants. Bottom panel: post-outbreak data with fitted
infected mixing distribution (red line) and overall mixture distribution (black line).
Participants that are likely uninfected (posterior probability of infection ≤ 10%) are
represented in blue, and those that are likely infected (posterior probability of infection
≥ 90%) are represented in red. Samples with intermediate posterior probabilities of
infection are coloured in purple. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

decrease (56 versus 31). This suggests that some of the participants with
modest titer increase may actually have been infected.

In an earlier analyses a slightly different and more lenient clas-
sification rule for serological infection has been used (Gouma et al.,
2014b). Here, the authors opted for either a fourfold increase of anti-
body concentrations, or at least a post-outbreak titer of 10.6 (antibody
concentration 1500 RU/mL). In this case, the number of infections and
infection attack rates are 37 and 37∕746 = 0.050, respectively.

3.2. Parameter estimation

Next, we fit our mixture model (Eqs. (1)–(4)) to the data. Parameter
estimates and derived quantities are presented in Table 1, and the
data and model fit are presented in Fig. 2. Table 1 shows that the
posterior mean of antibody concentrations in infected persons (9.89) is
approximately six times higher than the posterior mean in uninfected
persons (7.28, hence 29.89−7.28 = 6.1). However, the estimated antibody
distributions are quite broad, especially for samples from uninfected
persons. Overall, Fig. 2 illustrates that there is a good correspondence
between the model fit and data both for the pre- and post-outbreak
surveys. Interestingly, even though there is considerable overlap be-
tween the mixing distributions of uninfected and infected persons, for
most participants there is little doubt whether they had been infected
or not. This is due to the high estimated intraclass correlation (0.85),
and random variation in antibody concentrations of uninfected persons
is estimated to be at most twofold (2𝜎uninf

noise = 1.02). This, in turn, implies
that already a twofold increase in antibody concentration provides
evidence that the persons may have been infected. In fact, the estimated
probability of infection is essentially 0 if the post-outbreak titer equals
the pre-outbreak titer (0.00034, 95%CrI: 0.000014−0.0025), is close to 1
in case of a fourfold antibody increase (0.994, 95%CrI: 0.963−1.0), and
4
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Table 1
Parameter estimates and selected generated quantities. Estimates and generated quan-
tities are represented by posterior medians and 95% posterior credible intervals. See
text for explanation and details.

Parameter Description Estimate 95%CrI

𝜇uninf
pop Mean of antibody concentrations

in uninfected participants
7.28 (7.20–7.36)

𝜎uninf
pop Standard deviation of antibody

concentrations in uninfected
participants

1.19 (1.13–1.26)

𝜎uninf
noise Random variation of antibody

concentrations (e.g., measurement
noise)

0.51 (0.48–0.54)

𝜇inf Mean of antibody concentrations
in infected participants

9.89 (9.42–10.4)

𝜎inf Standard deviation of antibody
concentrations in infected
participants

1.91 (1.63–2.27)

𝑞0 Probability of infection
at no antibody increase

0.00034 (0.000014–0.0025)

𝑞1 Probability of infection
at twofold antibody increase

0.19 (0.064–0.38)

𝑞2 Probability of infection
at fourfold antibody increase

0.994 (0.963–1.0)

𝑟ICC Intraclass correlation
in uninfected participants

0.85 (0.82–0.87)

𝑝inf Overall probability of infection
(cumulative incidence)

0.095 (0.082–0.11)

is almost 20% in case of a twofold increase (0.19, 95%CrI: 0.064−0.38).
The overall estimated cumulative incidence of infection is estimated at
0.095 (95%CrI: 0.082 − 0.11) ( Table 1).

To gauge the robustness of the above results with respect to the
included participants, we rerun all analyses without the 16 participants
with strongly decreased antibody concentrations. Overall, the results
remain very similar, owing to the fact that these 16 only represent
a small fraction of the total study population (≈2%) while these par-
ticipants are with high certainty classified as uninfected. The main
difference is that the random variation from the latent antibody con-
centration in uninfected persons is estimated to be even smaller (0.37
versus 0.51), leading to a further increase in the intraclass correlation
from 0.85 to 0.91. This in turn, leads to even higher precision with
which individual probabilities of infection are estimated, and overall
estimated cumulative incidence of infection is slightly increased (0.11,
95%CrI: 0.098 − 0.13).

Fig. 3 shows 100 samples from the posterior distribution of the
logistic infection function (Eq. (1)) together with estimated individual
infections probabilities (Eq. (5)) as a function of the titer difference
between pre- and post-outbreak samples. Most participants either have
a post-outbreak titer that is close to the pre-outbreak titer, or have a
post-outbreak titer that is substantially higher than the pre-outbreak
titer. For these participants there is little doubt whether they have been
infected or not. For instance, a titer difference of 0.5 translates to an
increase of 41% of the antibody concentration (20.5 = 1.4), and in this
case it is highly unlikely that the increase has been caused by infection.
Conversely, a difference of 1.6 translates to a threefold increase of the
antibody concentration, and in this case it is approximately threefold
more likely that the participant has been infected rather than that
it has not been infected. Between these two extremes is the main
uncertainty with respect to the infection status. Overall, there is a
good correspondence between the infection function and individual
estimated probabilities of infection, and this indicates that the model
fits the data well.

3.3. Probability of infection as function of pre-outbreak antibody titer

We have plotted pre-titers as a function of the infection probability
category (<10%, 10%–90%, and ≥90%)(4), to investigate to what extent
 from ClinicalKey.com by Elsevier on July 31, 2024. 
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Fig. 3. Estimated infection probabilities as function of differences in antibody concen-
trations. Shown are 100 samples from the posterior distribution of the logistic function
determining the probability that a sample belongs to the infected component, as func-
tion of the difference in the antibody titers (grey lines). Also shown are the estimated
(posterior median) infection probabilities for each of the 746 participants (dots), and
uncertainty in the infection probabilities (95%CrI, whiskers). Notice that a difference
of 1 between post- and pre-outbreak samples corresponds to a twofold increase, that
a value of 2 corresponds to a fourfold increase, etcetera. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

the pre-titer can be gauged from the estimated infection probabili-
ties, and to show the numbers in the various infection groups. The
figure shows that the distribution of pre-titers in participants with
low estimated probability of infection (<10%) is broad and covers
not only high pre-titer values (>8, say) but includes low pre-titers as
well, indicating that only a small fraction of participants with low
titers have been infected. Conversely, the distribution of pre-titers in
participants that are likely infected (probability ≥90%) is also broad,
and includes participants with a pre-titer >8. Hence, a high pre-titer
does not necessarily protect against infection. Importantly, the figure
shows that for the majority of participants there is little uncertainty
as to whether they have been infected or not. In fact, the estimated
probability of infection is uncertain (i.e. between 10% and 90%) for
only a small fraction of the study population ( 31

746 < 5%).
Next, we turn attention to the relation between pre-outbreak an-

tibody titers and cumulative incidence of infection. Fig. 5 shows for
all 746 participants the estimated infection probability with associated
uncertainty as function of the pre-outbreak titer. In general, there is
limited uncertainty for most participants, especially when the estimated
probability of infection is close to 0 or close to 1. Only for a small
subset of 31 participants with estimated posterior median probability
of infection ≥10% and <90% there is substantial uncertainty.

To generalise these results for groups of persons and estimate the
probability of infection as function of the pre-outbreak antibody titer
we have stratified the study population by pre-outbreak antibody titers
and calculated the probabilities of infection in these groups (black lines
in 5). Specifically, we have grouped pre-outbreak titers in four equal
sized groups, with titer ranges [2, 6.48), [6.48, 7.35), [7.35, 8.18), and
[8.18, 15), corresponding to antibody concentrations of 4–89 RU/mL,
89–163 RU/mL, 163–290 RU/mL, and 290–32,768 RU/mL. The es-
timated probabilities of infection generally decrease with increasing
pre-outbreak antibody titer. Specifically, the estimated infection prob-
ability is 0.12 (95%CrI: 0.10 − 0.13) for the lowest two quartiles, and
0.056 (95%CrI: 0.044 − 0.068) for the highest quartile. Hence, while
there is no antibody titer that provides protection against infection, the
probability of infection is more than double in the groups with low
pre-outbreak antibody titers as compared to the group with highest
antibody titers. The estimated overall probability of infection is 0.95
5
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Fig. 4. Pre-titer as function of the estimated probability of infection, stratified by
infection probability. Shown are the pre-titers of all participants as function of the
posterior median estimated infection probabilities (dots) together with corresponding
boxplots of the distributions (interquartile and overall ranges).

Fig. 5. Estimated infection probabilities as function of the pre-outbreak antibody titer.
Shown are the estimated infection probabilities for all participants (dots: posterior
medians; lines: 95% credible interval). Colours represent three infection probability
classes (cf. Fig. 2). Also shown are estimated infection probabilities (median and 95%
credible intervals), stratified by quartile of pre-outbreak antibody concentration.

(95%CrI: 0.082 − 0.11) 1. Thus, our results confirm earlier results
that the probability of infection increases with decreasing antibody
titers (Kaaijk et al., 2019), but yield substantially higher infection
attack rates than reported earlier.

4. Discussion

The past two decades have witnessed a distinct increase in the num-
ber of outbreaks of mumps in highly vaccinated populations, mostly by
non-vaccine genotypes, with an over-representation of adolescents and
young adults, and predominantly in close-contact settings (households,
schools and universities, parties) (Lam et al., 2020). This has prompted
suggestions that a booster vaccination in adolescence could be benefi-
cial (Cardemil et al., 2017; Lam et al., 2020; Kaaijk et al., 2020, 2019).
Our analyses add to these results by showing that the infection attack
rate has been high in Dutch universities (9.5%), and that the infection
attack rate has been more than twice as high in students with low pre-
existing mumps-specific IgG antibody concentrations than in students
with high pre-existing antibodies (12% vs 5.6%). However, we also
show there is no fixed pre-outbreak antibody concentration that pro-
vides full protection against infection. This indicates that not only IgG
 from ClinicalKey.com by Elsevier on July 31, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.
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antibodies but also other compartments of the immune system, such as
cellular immunity, play a role in protection against mumps (Jokinen
et al., 2007; de Wit et al., 2018). Nevertheless, young adults with
low mumps-specific IgG antibody concentrations are at higher risk for
infection and may therefore benefit most from a third dose of the MMR
vaccine. Interestingly in this context, our previous study showed that
individuals with lowest pre-vaccination IgG concentrations also showed
the strongest increase in IgG concentrations after vaccination (Kaaijk
et al., 2020).

Our analyses extend earlier analyses for the same outbreak (Gouma
et al., 2014b; Kaaijk et al., 2019). A strength of the current analyses is
that they are fully self-contained, and that all parameters, distributions,
and infection rates are estimated from the data. This is a considerable
advantage over previous analyses, as there is no fixed predefined level
of antibody concentrations that is indicative of infection or protec-
tion against infection (Teunis et al., 2016; Teunis and van Eijkeren,
2020). Moreover, antibody concentrations in the population depend in
a complex manner on time since last vaccination, potential previous
infection(s), and outbreak genotype(s). Therefore, it is unlikely that
proper sets of validation samples with confirmed uninfected and in-
fected persons can be obtained. This is true not only for our population
of university students but probably holds more generally. Thus, ad hoc
choices have previously been made for the infection criterion (a four-
fold antibody increase with additional requirements depending on the
study). Comparing our results with the earlier analyses of Gouma et al.
(2014b) and Kaaijk et al. (2019) we find a similar pattern of infection
attack rates increase with decreasing prior antibody concentrations.
Our analyses also indicate, however, that infection attack rates are
substantially higher (9.5%) than reported earlier (4%–6%). This is due
o the fact that many participants with modest increases of antibody
iters (two- to threefold) may actually have been infected. In all, our
esults paint a more dynamic picture of the antibody dynamics induced
y infection and waning than hitherto considered.

Previous analyses for bivariate serological cross-sectional studies
te Beest et al., 2014, 2015; Vink et al., 2016) have modelled the sero-
ogical response with bivariate mixture distributions. Here, by virtue of
he fact that we have paired data at our disposal we have been able to
ouple pre- and post-outbreak data using an infection function (Eq. (1)).
his has enabled precise estimation of infection probabilities for the
ajority of participants even though the distributions of uninfected

nd infected persons show considerable overlap. In fact, we would not
ave been able to obtain precise estimates of infection probabilities if
he data had been treated as two separate cross-sectional surveys (J.
omme, unpublished).

In our analyses we have included 16 participants with a strong
at least fourfold) antibody decrease. These person may have had
xperienced a recent mumps infection before the first sampling, and
ay therefore not be representative for antibody concentrations in
opulations with no recent exposure. To study how the results are
ffected by this choice, we have performed a sensitivity analysis in
hich these samples are excluded. The results of these analyses are very

imilar to the main analyses. This is due to the fact that these 16 persons
epresent only a small minority of the study population (2%), and the
act that the estimated probability of infection for those participants is
lose to zero.

Two main limitations deserve scrutiny. First, we have throughout
ocused on probabilistic classification of participants and estimation
f the serological infection attack rate. It would be desirable if the
nalyses could be extended to include not only serological data but also
nformation on the severity of infection. It would be particularly inter-
sting to study how the severity of infection depends on both the pre-
nd post-outbreak antibody concentrations. Second, our analyses apply
o the specific situation of medical students in the Netherlands. This is
specific population and setting. For instance, in the Netherlands the

ast majority of students have been vaccinated, and contact intensities
6

n this group are probably substantially higher than in other strata of
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the population of similar age. It remains therefore an open question
to which extent the results still apply in other settings. In particular,
one could envisage that our estimated infection attack rates in medical
students represent an upper bound for this age group in general.

Finally, analyses for paired data as presented here may have wider
applicability, and are not restricted to serological surveys for infectious
diseases. Indeed, our methods apply whenever there is a latent response
that is relatively stable but highly individual-specific. In such instances,
it is of interest to be able to decide when there are substantial devia-
tions from this stable individual-specific response. Such situations occur
often in hospital settings when patients are regularly screened for the
onset of disease. Our study has shown one way how such data can be
analysed with mixture model-based methods.
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