59 research outputs found

    What matters in practice teaching? The perceptions of schools and students

    Get PDF
    No Abstract Available South African Journal of Education Vol.25(1) 2005: 1-

    RSV: OSG Fabric Monitoring and Interoperation with WLCG Monitoring Systems

    Get PDF
    Presented at CHEP 2009 (Computing in High Energy and Nuclear Physics)

    How FAIR DOs Enable Interoperability

    Get PDF

    What matters in practice teaching? The perceptions of schools and students

    Get PDF
    Based on research involving interviews and focus groups with teachers and student teachers involved in teaching practice, the authors sought to identify the factors that make a qualitative difference to school experience in the training of teachers. The factors identified were: how much teaching practice, the relationships between schools and the university, mentoring and supervision, teaching ability and the value added by schools. They were considered in the light of the literature on teaching practice and examples of established international standards. The first factor involved a consideration of the period of time spent by student teachers in schools. Relationships between the schools and university probed the perceptions of the schools and the students of how the university organised teaching practice. Mentoring and supervision explored the implications of an existing system of supervision and the more extensive use of mentors in schools. Teaching ability considered subject area knowledge, relationships with learners and professionalism, and the value added by schools reflected upon those aspects of training that can only be provided by schools. Conclusions are presented for each of the factors

    New science on the Open Science Grid

    Get PDF
    The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large-scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement, and the distributed facility. This paper gives both a brief general description and specific examples of new science enabled on the OSG. More information is available at the OSG web site: www.opensciencegrid.org

    Galaxy based BLAST submission to distributed national high throughput computing resources

    Get PDF
    To assist the bioinformatic community in leveraging the national cyberinfrastructure, the National Center for Genomic Analysis Support (NCGAS) along with Indiana University's High Throughput Computing (HTC) group have engineered a method to use the Galaxy to submit BLAST jobs to the Open Science Grid (OSG). OSG is a collaboration of resource providers that utilize opportunistic cycles at more than 100 universities and research centers in the US. BLAST jobs make a significant portion of the research conducted on NCGAS resources, moving jobs that are conducive to an HTC environment to the national cyberinfrastructure would alleviate load on resources at NCGAS and provide a cost effective solution for getting more cycles to reduce the unmet needs of bioinformatic researchers. To this point researchers have tackled this issue by purchasing additional resources or enlisting collaborators doing the same type of research, while HTC experts have focused on expanding the number of resources available to historically HTC friendly science workflows. In this paper, we bring together expertise from both areas to address how a bioinformatics researcher using their normal interface, Galaxy, can seamlessly access the OSG which routinely supplies researchers with millions of compute hours daily. Efficient use of these results will supply additional compute time to researcher and help provide a yet unmet need for BLAST computing cycles.This material is based upon work supported by the National Science Foundation under Grant No. ABI-1062432, Craig Stewart, PI. William Barnett, Matthew Hahn, and Michael Lynch, co-PIs. This work was supported in part by the Lilly Endowment, Inc. and the Indiana University Pervasive Technology Institute. Any opinions presented here are those of the presenter(s) and do not necessarily represent the opinions of the National Science Foundation or any other funding agencie

    Building a Chemical-Protein Interactome on the Open Science Grid

    Get PDF
    The Structural Protein-Ligand Interactome (SPLINTER) project predicts the interaction of thousands of small molecules with thousands of proteins. These interactions are predicted using the three-dimensional structure of the bound complex between each pair of protein and compound that is predicted by molecular docking. These docking runs consist of millions of individual short jobs each lasting only minutes. However, computing resources to execute these jobs (which cumulatively take tens of millions of CPU hours) are not readily or easily available in a cost effective manner. By looking to National Cyberinfrastructure resources, and specifically the Open Science Grid (OSG), we have been able to harness CPU power for researchers at the Indiana University School of Medicine to provide a quick and efficient solution to their unmet computing needs. Using the job submission infrastructure provided by the OSG, the docking data and simulation executable was sent to more than 100 universities and research centers worldwide. These opportunistic resources provided millions of CPU hours in a matter of days, greatly reducing time docking simulation time for the research group. The overall impact of this approach allows researchers to identify small molecule candidates for individual proteins, or new protein targets for existing FDA-approved drugs and biologically active compounds

    The Open Science Grid Status and Architecture The Open Science Grid Executive Board on behalf of the OSG Consortium: Ruth Pordes, Don Petravick: Fermi National Accelerator Laboratory

    Get PDF
    Abstract. The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. The OSG project[1] is funded by the National Science Foundation and the Department of Energy Scientific Discovery through Advanced Computing program. The OSG project provides specific activities for the operation and evolution of the common infrastructure. The US ATLAS and US CMS collaborations contribute to and depend on OSG as the US infrastructure contributing to the World Wide LHC Computing Grid on which the LHC experiments distribute and analyze their data. Other stakeholders include the STAR RHIC experiment, the Laser Interferometer Gravitational-Wave Observatory (LIGO), the Dark Energy Survey (DES) and several Fermilab Tevatron experiments-CDF, D0, MiniBoone etc. The OSG implementation architecture brings a pragmatic approach to enabling vertically integrated community specific distributed systems over a common horizontal set of shared resources and services. More information can be found at the OSG web site: www.opensciencegrid.org
    corecore