36 research outputs found
A Role for Estrogen Receptor Phosphorylation in the Resistance to Tamoxifen
About two thirds of all human breast cancer cases are estrogen receptor positive.
The drug of first choice for these patients is tamoxifen. However, about half of the recurrences after removal of the primary tumor
are or become resistant to this drug. While many mechanisms have been identified for tamoxifen resistance in the lab, at present only a
few have been translated to the clinic. This paper highlights the role in tamoxifen resistance of phosphorylation by different kinases on different
sites of the estrogen receptor. We will discuss the molecular pathways and kinases that are involved in phosphorylation of ERα and how
these affect tamoxifen resistance. Finally, we will elaborate on the clinical translation of these observations and the possibility to predict tamoxifen
responses in patient tumor samples before treatment onset. The findings made originally on the bench may translate into a better and personalized
treatment of breast cancer patients using an old and safe anticancer drug: tamoxifen
Protein Kinase A-induced tamoxifen resistance is mediated by anchoring protein AKAP13
Univariate analysis for different AKAP13Â probes. Table S2. Univariate analysis. Table S3. Multivariate analysis. (PDF 64Â kb
The End of the Marxist-Legal-Theories in Japan (3)
With current techniques, it remains a challenge to assess coregulator binding of nuclear receptors, for example, the estrogen receptor alpha (ERa). ERα is critical in many breast tumors and is inhibited by antiestrogens such as tamoxifen in cancer therapy. ERα is also modified by acetylation and phosphorylation that affect responses to the antiestrogens as well as interactions with coregulators. Phosphorylation of ERα at Ser305 is one of the mechanisms causing tamoxifen resistance. Detection of resistance in patient samples would greatly facilitate clinical decisions on treatment, in which such patient
Protein Kinase A-induced tamoxifen resistance is mediated by anchoring protein AKAP13
Background: Estrogen Receptor alpha (ERaα)-positive breast cancer patients receive endocrine therapy, often in the form of tamoxifen. However, resistance to tamoxifen is frequently observed. A signalling cascade that leads to tamoxifen resistance is dictated by activation of the Protein Kinase A (PKA) pathway, which leads to phosphorylation of ERaα on Serine 305 and receptor activation, following tamoxifen binding. Thus far, it remains elusive what protein complexes enable the PKA-ERaα interaction resulting in ERaα Serine 305 phosphorylation. Methods: We performed immunohistochemistry to detect ERaαSerine 305 phosphorylation in a cohort of breast cancer patients who received tamoxifen treatment in the metastatic setting. From the same tumor specimens, Agilent 44 nK gene expression analyses were performed and integrated with clinicopathological data and survival information. In vitro analyses were performed using MCF7 breast cancer cells, which included immunoprecipitations and Fluorescence Resonance Energy Transfer (FRET) analyses to illustrate ERaα complex formation. siRNA mediated knockdown experiments were performed to assess effects on ERaαSerine 305 phosphorylation status, ERaα/PKA interactions and downstream responsive gene activity. Results: Stratifying breast tumors on ERaα Serine 305 phosphorylation status resulted in the identification of a gene network centered upon AKAP13. AKAP13 mRNA expression levels correlate with poor outcome in patients who received tamoxifen treatment in the metastatic setting. In addition, AKAP13 mRNA levels correlate with ERaαSerine 305 phosphorylation in breast tumor samples, suggesting a functional connection between these two events. In a luminal breast cancer cell line, AKAP13 was found to interact with ERaα as well as with a regulatory subunit of PKA. Knocking down of AKAP13 prevented PKA-mediated Serine 305 phosphorylation of ERaα and abrogated PKA-driven tamoxifen resistance, illustrating that AKAP13 is an essential protein in this process. Conclusions: We show that the PKA-anchoring protein AKAP13 is essential for the phosphorylation of ERaαS305, which leads to tamoxifen resistance both in cell lines and tamoxifen-treated breast cancer patients
