89 research outputs found

    Multiomics profiling of primary lung cancers and distant metastases reveals immunosuppression as a common characteristic of tumor cells with metastatic plasticity

    Get PDF
    BACKGROUND: Metastasis is the primary cause of cancer mortality accounting for 90% of cancer deaths. Our understanding of the molecular mechanisms driving metastasis is rudimentary. RESULTS: We perform whole exome sequencing (WES), RNA sequencing, methylation microarray, and immunohistochemistry (IHC) on 8 pairs of non-small cell lung cancer (NSCLC) primary tumors and matched distant metastases. Furthermore, we analyze published WES data from 35 primary NSCLC and metastasis pairs, and transcriptomic data from 4 autopsy cases with metastatic NSCLC and one metastatic lung cancer mouse model. The majority of somatic mutations are shared between primary tumors and paired distant metastases although mutational signatures suggest different mutagenesis processes in play before and after metastatic spread. Subclonal analysis reveals evidence of monoclonal seeding in 41 of 42 patients. Pathway analysis of transcriptomic data reveals that downregulated pathways in metastases are mainly immune-related. Further deconvolution analysis reveals significantly lower infiltration of various immune cell types in metastases with the exception of CD4+ T cells and M2 macrophages. These results are in line with lower densities of immune cells and higher CD4/CD8 ratios in metastases shown by IHC. Analysis of transcriptomic data from autopsy cases and animal models confirms that immunosuppression is also present in extracranial metastases. Significantly higher somatic copy number aberration and allelic imbalance burdens are identified in metastases. CONCLUSIONS: Metastasis is a molecularly late event, and immunosuppression driven by different molecular events, including somatic copy number aberration, may be a common characteristic of tumors with metastatic plasticity

    Ocular medicines in children: the regulatory situation related to clinical research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many ocular medications are prescribed for paediatric patients, but the evidence for their rational use is very scant. This study was planned to compare the availability and the licensing status of ocular medications marketed in Italy, the United Kingdom (UK), and the United States of America (USA) related to the amount of published and un-published RCTs testing these drugs in the paediatric population.</p> <p>Methods</p> <p>A quantitative analysis was performed to evaluate the number of ocular medications with a paediatric license in Italy, the UK, and the USA. A literature search was also performed in MEDLINE, EMBASE, and The Cochrane Central Register of Controlled Trials for randomized controlled trials (RCTs) on ophthalmic pharmacological therapy in children aged < 18 years, published up to December 2010. A search in the international clinical trial registries, the list of paediatric investigation plans (PIPs) approved by European Medicines Agency (EMA), and the table of medicines with new paediatric information approved by Food and Drug Administration (FDA) was also performed.</p> <p>Results</p> <p>In all, of 197 drugs identified, 68 (35%) single drugs are licensed for paediatric use at least in one considered country, while 23 (12%) were marketed in all three countries. More specifically, in Italy 43 single drugs (48% of those marketed) had a paediatric license, while 39 (64%) did in the UK and 22 (54%) did in the USA. Only 13 drugs were marketed with a paediatric license in all countries.</p> <p>The percentage of drugs licensed for paediatric use and for which at least one RCT had been performed ranged between 51% in Italy and 55% in the USA. No published RCTs were found for 11 (48%) drugs licensed for paediatric use in all three countries. In all, 74 (35%) of the retrieved RCTs involved mydriatic/cycloplegic medications.</p> <p>A total of 62 RCTs (56% completed) on 46 drugs were found in the international clinical trial registries. Cyclosporin and bevacizumab were being studied in many ongoing trials. Twenty-six drugs had new paediatric information approved by FDA based on new paediatric clinical trials, while only 4 PIPs were approved by EMA.</p> <p>Conclusions</p> <p>There is a pressing need for further research and clinical development in the pediatric ophthalmic area, where effective up-to-date treatments, and additional research and education on use in children, remain priorities.</p

    Conditional Wwox Deletion in Mouse Mammary Gland by Means of Two Cre Recombinase Approaches

    Get PDF
    Loss of WWOX expression has been reported in many different cancers including breast cancer. Elucidating the function of this gene in adult tissues has not been possible with full Wwox knockout models. Here we characterize the first conditional models of Wwox ablation in mouse mammary epithelium utilizing two transgenic lines expressing Cre recombinase, keratin 5-Cre (BK5-Cre) and MMTV-Cre. In the BK5-Cre model we observed very efficient Wwox ablation in KO mammary glands. However, BK5-Cre Wwox KO animals die prematurely for unknown reasons. In the MMTV-Cre model we observed significant ablation of Wwox in mammary epithelium with no effect on survival. In both of these models we found that Wwox deletion resulted in impaired mammary branching morphogenesis. We demonstrate that loss of Wwox is not carcinogenic in our KO models. Furthermore, no evidence of increase proliferation or development of premalignant lesions was observed. In none of the models did loss of a single Wwox allele (i.e. haploinsufficiency) have any observable phenotypic effect in mammary gland. To better understand the function of Wwox in the mammary gland, transcriptome profiling was performed. We observed that Wwox ablation results in the deregulation of genes involved in various cellular processes. We found that expression of the non-canonical Wnt ligand, Wnt5a, was significantly upregulated in Wwox KO mammary epithelium. Interestingly, we also determined that components of the Jak/Stat3 signaling pathway were upregulated in KO mice and this correlated with a very robust increase in phospho-Stat3 signaling, which warrants further testing. Even though the loss of Wwox expression in breast and other cancers is very well documented, our findings suggest that Wwox does not act as a classical tumor suppressor as previously thought

    MMTV-Wnt1 and -ΔN89β-Catenin Induce Canonical Signaling in Distinct Progenitors and Differentially Activate Hedgehog Signaling within Mammary Tumors

    Get PDF
    Canonical Wnt/β-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-ΔN89β-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-ΔN89β-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-ΔN89β-catenin activate canonical Wnt signaling within distinct cell-types. ΔN89β-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18+ER−PR−CD24highCD49flow profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14+/p63+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-ΔN89β-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand

    The Wnt Receptor, Lrp5, Is Expressed by Mouse Mammary Stem Cells and Is Required to Maintain the Basal Lineage

    Get PDF
    Background: Ectopic Wnt signaling induces increased stem/progenitor cell activity in the mouse mammary gland, followed by tumor development. The Wnt signaling receptors, Lrp5/6, are uniquely required for canonical Wnt activity. Previous data has shown that the absence of Lrp5 confers resistance to Wnt1-induced tumor development. Methodology/Principal Findings: Here, we show that all basal mammary cells express Lrp5, and co-express Lrp6 in a similar fashion. Though Wnt dependent transcription of key target genes is relatively unchanged in mammary epithelial cell cultures, the absence of Lrp5 specifically depletes adult regenerative stem cell activity (to less than 1%). Stem cell activity can be enriched by.200 fold (over 80 % of activity), based on high Lrp5 expression alone. Though Lrp5 null glands have apparent normal function, the basal lineage is relatively reduced (from 42 % basal/total epithelial cells to 22%) and Lrp52/2 mammary epithelial cells show enhanced expression of senescence-associated markers in vitro, as measured by expression of p16 Ink4a and TA-p63. Conclusions/Significance: This is the first single biomarker that has been demonstrated to be functionally involved in stem cell maintenance. Together, these results demonstrate that Wnt signaling through Lrp5 is an important component o

    Key signaling nodes in mammary gland development and cancer: β-catenin

    Get PDF
    β-Catenin plays important roles in mammary development and tumorigenesis through its functions in cell adhesion, signal transduction and regulation of cell-context-specific gene expression. Studies in mice have highlighted the critical role of β-catenin signaling for stem cell biology at multiple stages of mammary development. Deregulated β-catenin signaling disturbs stem and progenitor cell dynamics and induces mammary tumors in mice. Recent data showing deregulated β-catenin signaling in metaplastic and basal-type tumors suggest a similar link to reactivated developmental pathways and human breast cancer. The present review will discuss β-catenin as a central transducer of numerous signaling pathways and its role in mammary development and breast cancer

    Multi-region exome sequencing reveals genomic evolution from preneoplasia to lung adenocarcinoma

    Get PDF
    There has been a dramatic increase in the detection of lung nodules, many of which are preneoplasia atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA) or invasive adenocarcinoma (ADC). The molecular landscape and the evolutionary trajectory of lung preneoplasia have not been well defined. Here, we perform multi-region exome sequencing of 116 resected lung nodules including AAH (n = 22), AIS (n = 27), MIA (n = 54) and synchronous ADC (n = 13). Comparing AAH to AIS, MIA and ADC, we observe progressive genomic evolution at the single nucleotide level and demarcated evolution at the chromosomal level supporting the early lung carcinogenesis model from AAH to AIS, MIA and ADC. Subclonal analyses reveal a higher proportion of clonal mutations in AIS/MIA/ADC than AAH suggesting neoplastic transformation of lung preneoplasia is predominantly associated with a selective sweep of unfit subclones. Analysis of multifocal pulmonary nodules from the same patients reveal evidence of convergent evolution
    corecore